injection velocity
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 59)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Benjamin Li ◽  
Yu Feng

Various factors and challenges are involved in efficiently delivering drugs using nasal sprays to the olfactory region to treat central nervous system diseases. In this study, computational fluid dynamics was used to simulate nasal drug delivery to (1) examine effects on drug deposition when various external magnetic fields are applied to charged particles, (2) comprehensively study effects of multiple parameters (i.e., particle aerodynamic diameter; injection velocity magnitude, angle, and position; magnetic force strength and direction), and (3) determine how to achieve the optimal delivery efficiency to the olfactory epithelium. The Reynolds-averaged Navier–Stokes equations governed airflow, with a realistic inhalation waveform implemented at the nostrils. Particle trajectories were modeled using the one-way coupled Euler–Lagrange model. A current-carrying wire generated a magnetic field to apply force on charged particles and direct them to the olfactory region. Once drug particles reached the olfactory region, their diffusion through mucus to the epithelium was calculated analytically. Particle aerodynamic diameter, injection position, and magnetic field strength were found to be interconnected in their effects on delivery efficiency. Specific combinations of these parameters achieved over 65-fold higher drug delivery efficiency compared with uniform injections with no magnetic fields. The insight gained suggests how to integrate these factors to achieve the optimal efficiency.


Author(s):  
Weisheng Lin ◽  
Xiaogang Wang ◽  
Xueqiao Xu ◽  
Defeng Kong ◽  
Yumin Wang ◽  
...  

Abstract Tritium self-sufficiency in future DT fusion reactor is a crucial challenge. As an engineering test reactor, CFETR requires a burning fraction of 3% for the goal to test the accessibility to the future fusion plant. To self-consistently simulate burning plasmas with profile changes in pellet injection scenarios and to estimate the corresponding burning fraction, a one-dimensional (1-D) multi-species radial transport model is developed in BOUT++ frame. Several pellet-fueling scenarios are then tested in the model. Results show that the increased fueling depth improves the burning fraction by particle confinement improvement and fusion power increase. Nevertheless, by increasing the depth, the pellet cooling-down may significantly lower the temperature in the core region. Taking the density perturbation into consideration, the reasonable parameters of the fueling scenario in these simulations are estimated as the pellet radius r_p=3 mm, the injection rate = 4 Hz , the pellet injection velocity =1000–2000 m/s without drift or 450 m/s with high filed side (HFS) drift.


2021 ◽  
pp. 1-22
Author(s):  
Wei Wang ◽  
Liu Boxing ◽  
Lu Jinling ◽  
Jianjun Feng ◽  
Wuli Chu ◽  
...  

Abstract Discrete tip injection is an effective method to enhance stability of compressors. This study compares the effects of injection parameters on compressor performance and underlying mechanisms in two different compressors. The transonic compressor is studied using unsteady simulations and the subsonic compressor is mainly investigated with experiment. Results show that tip injection improves stable operating range by 35.6% and 77.9% for the transonic compressor and subsonic compressor, respectively, without decreasing compressor efficiency. The effects of circumferential coverage percentage and injector throat height on compressor stability are similar in the two compressors when the injection velocity is double the velocity of main flow. The optimal injector throat height which is normalized by the tip clearance size is the same for the two compressors, and the best circumferential coverage percentage for the subsonic compressor is lower than that in the transonic compressor. For the two compressors, the adaption of the main flow to the discrete tip injection is unsteady, and the hysteresis effect that the recovery of tip blockage lags behind the recovery of tip leakage vortex accounts for the improved stability using partial coverage of injection. The injection efficiency, which is defined to quantify the improved quality of the flow field in the injection domain, is proven to determine the stall limits by studying the effects of several injection parameters. The guidelines built in the subsonic compressor can be used in the transonic compressor to design tip injection, but the optimal values of some injection parameters should be reconfirmed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Zhenhui Bi ◽  
Xin Chang ◽  
Lei Wang ◽  
Hanzhi Yang

The inter-salt shale in the Qianjiang formation of Jianghan Basin in China is characterized by multiple salt-shale bedding planes, various rock strength, and high heterogeneity of rock mechanics. In this paper fracturing experiments under different conditions were carried out to study the effects of the injection velocity, type of fracturing fluid and interface strength on the propagation law of hydraulic fracture in the salt sedimentary rhythm there. In the meantime, Acoustic emission system and radial strain sensor were applied to monitor experimental process. The result indicates that 1) compared with the shale, there are four fracture propagation modes mainly being observed: passivating type (Mode I), “I”-type (Mode II), penetration type (Mode III) and mixed type ((Mode IV)), among which the mixed type is the relatively complex crack propagation mode. 2) With the increase of injection rate and viscosity of fracturing fluid, the hydraulic fracture will penetrate cementation surface more easily. 3) The increase of flow rate and viscosity will increase the breakdown pressure. The breakdown pressure of high strength cementation surface is 16.70% higher than that of low strength.


2021 ◽  
Author(s):  
Sizhe Duan ◽  
Guoyong Fu ◽  
Huishan Cai

Abstract Based on the experimental parameters in HL-2A tokamak, hybrid simulations have been carried out to investigate the linear stability and nonlinear dynamics of BAE. It is found that the (m/n=3/2) beta-incuced Alfvén eigenmode (BAE) is excited by co-passing energetic ions with qmin=1.5 in linear simulation, and the mode frequency is consistent with experimental meuasurement. The simulation results show that the energetic ions βh, the injection velocity v0 and orbit width parameter ρh of energetic ions are important parameters determining the drive of BAE. Furthermore, the effect of qmin (with fixed shape of q profile) is studied, and it is found that: when qmin ≤ 1.50, the excited modes are BAEs, which are located near q=1.50 rational surfaces; when qmin > 1.50, the excited modes are simillar to the reversed-shear Alfvén eigenmodes (RSAEs), which are mainly localized around q=qmin surfaces. Nonlinear simulation results show that the nonlinear dynamics of BAE is sensitive to the EP drive. For strongly driven case, firstly, redistribution and transport of engetic ions are trigged by (m/n=3/2) BAE, which raised the radial gradient of energetic ions distribution function near q=2 rational surface, and then an EPM (m/n=4/2) is driven in nonlinear phase. Finally, these two instabilities triggered significant redistribution of energetic ions, which results in the twice-repeated and mostly-downward frequency chirping of (m/n=3/2) BAE. For weakly driven case, there are no (m/n=4/2) EPM being driven and twice-repeated chirping in nonlinear phase, since the radial gradient near q=2 rational surface is small and almost unchanged.


2021 ◽  
Vol 15 (4) ◽  
pp. 114-121
Author(s):  
Leonid Minkov ◽  
Johann Dueck ◽  
Mohamed M.A Hassan ◽  
Mahrous.A.M. Ali ◽  
Mohamed G Farghaly

Purpose. Although the hydrocyclone separator has many advantages, it still has some limitations which decrease its separation efficiency in many mineral processing applications because of fine particles which are miss separated to the coarse product in the underflow. Water injection in the conical part of the cyclone was recently implemented to solve this problem. The water injection mechanism and the way in which the injected water affects the separation are still not clear and need to be more investigated. Methods. New design of water injection hydrocyclone was tried using a modified conical part with a water injection range consist of five equal distance injection openings open directly on the periphery of the cone part. Findings. This study presents a mechanical mathematical model that simulates the water injection to give a clear indication of the injection mechanism impact on the classification process. It could also predict the dependence of the basic characteristics of the classification on the amount of the injected water and the influence of different operating and design parameters of the hydrocyclone. Originality. The model accounts for the fluid flow, the particle motion, the turbulent particle diffusion, and particle settling. Particle interactions and fine particle entrainment by settling coarse particles are also included in the model. The model was found to predict well the injection effect and agrees with the experimental results. Practical implications. The results showed also that the increase in water injection velocity leads to an increase in both the cut size and the minimal value of the separation curve. It was found also that the hydrocyclone length has an important effect on the injection process, and the separation sharpness is directly proportional to it at higher values of water injection velocity.


Author(s):  
Soumendra Kumar Rout ◽  
Pradipta Dutta

Abstract Better figure of merits (FOMs) have been achieved by using III-V compound material based junctionless double gate metal-oxide semiconductor field-effect transistors (JL DG-MOSFETs), and a thorough analysis of the device's performance over temperature has been performed using a highly N-doped GaAs-based JL DG-MOSFET using III-V compound material GaSb. GaSb, a compound material, is employed as the source material, which is well known for its greater mobility and injection velocity property with GaAs as the channel and drain materials, to obtain more output current and less leakage current due to the development of hetero structure (GaSb-GaAs) at the source-channel interface. The dielectric material HfO2 with a high k value is utilized to reduce the gate tunneling effects of electrons and enhance the control of the gate at the 20 nm channel length. Primary and auxiliary gates are taken to include ipact ionization on drain side for reducing the Subthreshold-swing. Numerous characteristics of a DG JLMOSFET, such as Id, SS, gm, TGF, Ion / Ioff, Cgs, and fT, GFP, TFP, GTFP are explored and compared with a silicon based material. The proposed structure shows an improved results comparing to the earlier model with Id of 117 mA, SS of 15.08 mV/decade, gm of 0.62 A/V, TGF of 38.8 V-1, Ion / Ioff ratio of 1.89 x 10 13, Cgs of 5.86 x 10 -16 F, fT of 2.05 x 10 15 Hz, GTFP of 1.81 x 10 17 Hz/V for the improvement of FOM in RF and DC analysis


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guy Leopold Mbogba ◽  
Elisabeth Ngo Nyobe ◽  
Maurice Lamara ◽  
Yves Christian Mbono Samba ◽  
Elkana Pemha

Abstract In this paper, we examine a steady laminar flow for an incompressible fluid located in a semi porous annular pipe and subjected to a favorable constant pressure gradient applied between the two borders of the pipe. The inner wall is impermeable and the fluid is sucked or injected at the outer wall at constant and uniform velocity, orthogonally to the wall. The problem under study depends on three parameters: the pipe gap ratio, the dimensionless external pressure gradient, and the Reynolds number defined from the sum of the suction or injection velocity and the maximum Hagen–Poiseuille velocity. The conservation of mass induces the zero-divergence velocity field which allows replacing the steady-flow Navier–Stokes equations with a single equation satisfied by the stream function and called the vorticity equation. Assuming the similarity-solution hypothesis, the problem under consideration is reduced to a fourth-order nonlinear ordinary differential equation with two boundary conditions at each wall. The numerical shooting technique including the Runge–Kutta algorithm and the Newton–Raphson optimization method is applied to obtain the solution for the steady flow. For various values of the dimensionless external pressure gradient, the profiles of the velocity components are found and investigations on the wall shear stress for both walls are performed. The results obtained are discussed and physical understandings for the problem studied are derived.


Sign in / Sign up

Export Citation Format

Share Document