Numerical investigation of a honeycomb liner grazed by laminar and turbulent boundary layers

2016 ◽  
Vol 792 ◽  
pp. 936-980 ◽  
Author(s):  
Qi Zhang ◽  
Daniel J. Bodony

Direct numerical simulations are used to study the interaction of a cavity-backed circular orifice with grazing laminar and turbulent boundary layers and incident sound waves. The flow conditions and geometry are representative of single degree-of-freedom acoustic liners applied in the inlet and exhaust ducts of aircraft engines and are the same as those from experiments conducted at NASA Langley. The simulations identify the fluid mechanics of how the sound field and state of the grazing boundary layer impact the in-orifice flow and suggest a simple flow analogy that enables scaling estimates. From the scaling estimates the simulations are then used to develop reduced-order models for the in-orifice flow and a time-domain impedance model is constructed. The liner is found to increase drag at all conditions studied by an amount that increases with the incident sound pressure amplitude.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Baoshan Yang ◽  
Ma Zhongcheng ◽  
Lingguo Zhu

A theoretical and experimental study on the separation method of the incident sound field based on a small-scale vector sensor is proposed in this study, with the aim of resolving the problem of separation and acquisition of an incident sound field under the interference of near-field sound scattering from a cylindrical shell in water. The method of identifying and separating sound waves obtained under plane wave conditions is extended to complex sound-field conditions. Simulation and experimental results show that the vector separation method can greatly reduce the sound pressure amplitude and the phase deviation of the incident sound field, which is affected by near-field scattering from the cylindrical surface. The separation accuracy is related to the deviation angle and the distance from the target surface. The maximum deviation of the pressure amplitude is less than 1 dB, and the phase deviation is less than 3°. This method can effectively suppress the near-field scattering of the cylindrical shell and improve the separation accuracy of the incident sound field. The research results have reference value for a range of practical engineering applications.


2021 ◽  
Author(s):  
Scott J. Peltier ◽  
Brian E. Rice ◽  
Ethan Johnson ◽  
Venkateswaran Narayanaswamy ◽  
Marvin E. Sellers

Sign in / Sign up

Export Citation Format

Share Document