scholarly journals Method of Separation of Incidental Acoustic Field on Cylindrical Shell by Vector Processing

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Baoshan Yang ◽  
Ma Zhongcheng ◽  
Lingguo Zhu

A theoretical and experimental study on the separation method of the incident sound field based on a small-scale vector sensor is proposed in this study, with the aim of resolving the problem of separation and acquisition of an incident sound field under the interference of near-field sound scattering from a cylindrical shell in water. The method of identifying and separating sound waves obtained under plane wave conditions is extended to complex sound-field conditions. Simulation and experimental results show that the vector separation method can greatly reduce the sound pressure amplitude and the phase deviation of the incident sound field, which is affected by near-field scattering from the cylindrical surface. The separation accuracy is related to the deviation angle and the distance from the target surface. The maximum deviation of the pressure amplitude is less than 1 dB, and the phase deviation is less than 3°. This method can effectively suppress the near-field scattering of the cylindrical shell and improve the separation accuracy of the incident sound field. The research results have reference value for a range of practical engineering applications.

2013 ◽  
Vol 444-445 ◽  
pp. 462-467
Author(s):  
Dang Guo Yang ◽  
Yong Hang Wu ◽  
Jin Min Liang ◽  
Jun Liu

A numerical simulation method on noise prediction, which incorporates aerodynamics and sound wave equations based on acoustic analogy, is presented in the paper. Near-field unsteady aerodynamic characteristic can be obtain by large eddy simulation (LES), and far-field propagation of sound waves and spatial sound-field can be obtain by solving the time-domain integral equations of Ffowcs Williams and Hawings (FW-H). Based on the method, a numerical simulation was done on a two-dimension cylinder and a three-dimension flat plate with blunt leading edge. The agreement of numerical results with experiment data validated the Feasibility of the method. The results also indicate that LES can describe vortex generation and shedding in the flow-fields, and FW-H formulation, which has taken time-lag between sound emission and reception times into account, can simulate time-effect of sound propagation toward far-fields.


1971 ◽  
Vol 46 (3) ◽  
pp. 577-597 ◽  
Author(s):  
D. G. Crighton ◽  
F. G. Leppington

According to the Lighthill acoustic analogy, the sound induced by a region of turbulence is the same as that due to an equivalent distribution of quadrupole sources within the fluid. It is known that the presence of scattering bodies situated near such multipoles can convert some of their intense near field energy into the form of sound waves whose amplitude is far greater than that of the incident field. Calculations are here presented to determine the extent of this conversion, for hard and soft bodies of various shapes, making use of the reciprocal theorem to recast the problem into one of finding the field, near the obstacle, induced by an incident plane wave. If the obstacle is small compared with a wavelength, then its presence is equivalent to an additional dipole (or source) whose greater efficiency as a sound radiator implies that the familiar intensity law I ∝ U8, for far field intensity I against typical turbulence velocity U for an unbounded flow, is replaced by I ∝ U6 (or I ∝ U4) for a hard (or soft) body. For the situation where the scatterer is large compared with wavelength, the prototype problem of a wedge of exterior angle (p/q)π is shown to yield an intensity law I ∝ U4+2q/p for both hard and soft surfaces. This result is shown to hold for the more general ‘wedge-like’ surfaces, whose dimensions are large scale and whose edges may be smoothed out on a small scale, compared with wavelength. The method used involves the matching of an incompressible flow, on the fine scales typical of the edge geometry, to an outer flow determined by the large scale features of the surface. Favourable comparisons are made with previous results pertaining to the two-dimensional semi-infinite duct and to the half-plate of finite thickness.


Author(s):  
Yong Thung Cho ◽  
M J Roan ◽  
J Stuart Bolton

Near-field acoustical holography is a technique that has been widely used to visualize noise sources from pressure measurements in spaces that can be assumed to be anechoic or semi-anechoic. Previously, a dual surface acoustical holography procedure based on making measurements on two surfaces between the source and a reflecting surface was introduced to remove the effects of reverberation. Little work has been performed in which beamforming has been used to visualize sources based on dual surface, near-field measurements in a reverberant environment: such a procedure is described here. Because many practical measurement environments are not completely anechoic, the source resolution accuracy of dual surface acoustical holography and beamforming procedures in reverberant environments is compared here by using numerical simulations. It has been found that dual surface acoustical holography provides the clearest representation of the source location when sound waves radiating from the source and the reflected waves are propagating in the opposite directions and when the measurement surfaces are conformal with the source geometry. However, it has also been found that dual surface beamforming provides more consistent source resolution performance regardless of the relative direction of wave propagation of the source and reflected waves.


2016 ◽  
Vol 792 ◽  
pp. 936-980 ◽  
Author(s):  
Qi Zhang ◽  
Daniel J. Bodony

Direct numerical simulations are used to study the interaction of a cavity-backed circular orifice with grazing laminar and turbulent boundary layers and incident sound waves. The flow conditions and geometry are representative of single degree-of-freedom acoustic liners applied in the inlet and exhaust ducts of aircraft engines and are the same as those from experiments conducted at NASA Langley. The simulations identify the fluid mechanics of how the sound field and state of the grazing boundary layer impact the in-orifice flow and suggest a simple flow analogy that enables scaling estimates. From the scaling estimates the simulations are then used to develop reduced-order models for the in-orifice flow and a time-domain impedance model is constructed. The liner is found to increase drag at all conditions studied by an amount that increases with the incident sound pressure amplitude.


2021 ◽  
Vol 11 (15) ◽  
pp. 7167
Author(s):  
Liang Xu ◽  
Xu Zhao ◽  
Lei Xi ◽  
Yonghao Ma ◽  
Jianmin Gao ◽  
...  

Swirling impinging jet (SIJ) is considered as an effective means to achieve uniform cooling at high heat transfer rates, and the complex flow structure and its mechanism of enhancing heat transfer have attracted much attention in recent years. The large eddy simulation (LES) technique is employed to analyze the flow fields of swirling and non-swirling impinging jet emanating from a hole with four spiral and straight grooves, respectively, at a relatively high Reynolds number (Re) of 16,000 and a small jet spacing of H/D = 2 on a concave surface with uniform heat flux. Firstly, this work analyzes two different sub-grid stress models, and LES with the wall-adapting local eddy-viscosity model (WALEM) is established for accurately predicting flow and heat transfer performance of SIJ on a flat surface. The complex flow field structures, spectral characteristics, time-averaged flow characteristics and heat transfer on the target surface for the swirling and non-swirling impinging jets are compared in detail using the established method. The results show that small-scale recirculation vortices near the wall change the nearby flow into an unstable microwave state, resulting in small-scale fluctuation of the local Nusselt number (Nu) of the wall. There is a stable recirculation vortex at the stagnation point of the target surface, and the axial and radial fluctuating speeds are consistent with the fluctuating wall temperature. With the increase in the radial radius away from the stagnation point, the main frequency of the fluctuation of wall temperature coincides with the main frequency of the fluctuation of radial fluctuating velocity at x/D = 0.5. Compared with 0° straight hole, 45° spiral hole has a larger fluctuating speed because of speed deflection, resulting in a larger turbulence intensity and a stronger air transport capacity. The heat transfer intensity of the 45° spiral hole on the target surface is slightly improved within 5–10%.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 314
Author(s):  
Tianyu Jing ◽  
Huilan Ren ◽  
Jian Li

The present study investigates the similarity problem associated with the onset of the Mach reflection of Zel’dovich–von Neumann–Döring (ZND) detonations in the near field. The results reveal that the self-similarity in the frozen-limit regime is strictly valid only within a small scale, i.e., of the order of the induction length. The Mach reflection becomes non-self-similar during the transition of the Mach stem from “frozen” to “reactive” by coupling with the reaction zone. The triple-point trajectory first rises from the self-similar result due to compressive waves generated by the “hot spot”, and then decays after establishment of the reactive Mach stem. It is also found, by removing the restriction, that the frozen limit can be extended to a much larger distance than expected. The obtained results elucidate the physical origin of the onset of Mach reflection with chemical reactions, which has previously been observed in both experiments and numerical simulations.


Author(s):  
Ying-Hui Jia ◽  
Fang-Fang Li ◽  
Kun Fang ◽  
Guang-Qian Wang ◽  
Jun Qiu

AbstractRecently strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. Based on the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with Sound Pressure Level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. The droplet smaller than 40μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100Hz (@ 123.4dB) or the Sound Pressure Level (SPL) is greater than 117.4dB (@ 50Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides theoretical perspective of acoustic effect to the microphysics of atmospheric clouds.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3674 ◽  
Author(s):  
Wei Lu ◽  
Yu Lan ◽  
Rongzhen Guo ◽  
Qicheng Zhang ◽  
Shichang Li ◽  
...  

A spiral sound wave transducer comprised of longitudinal vibrating elements has been proposed. This transducer was made from eight uniform radial distributed longitudinal vibrating elements, which could effectively generate low frequency underwater acoustic spiral waves. We discuss the production theory of spiral sound waves, which could be synthesized by two orthogonal acoustic dipoles with a phase difference of 90 degrees. The excitation voltage distribution of the transducer for emitting a spiral sound wave and the measurement method for the transducer is given. Three-dimensional finite element modeling (FEM)of the transducer was established for simulating the vibration modes and the acoustic characteristics of the transducers. Further, we fabricated a spiral sound wave transducer based on our design and simulations. It was found that the resonance frequency of the transducer was 10.8 kHz and that the transmitting voltage resonance was 140.5 dB. The underwater sound field measurements demonstrate that our designed transducer based on the longitudinal elements could successfully generate spiral sound waves.


2008 ◽  
Vol 601 ◽  
pp. 365-379 ◽  
Author(s):  
DALE R. DURRAN

An incompressibility approximation is formulated for isentropic motions in a compressible stratified fluid by defining a pseudo-density ρ* and enforcing mass conservation with respect to ρ* instead of the true density. Using this approach, sound waves will be eliminated from the governing equations provided ρ* is an explicit function of the space and time coordinates and of entropy. By construction, isentropic pressure perturbations have no influence on the pseudo-density.A simple expression for ρ* is available for perfect gases that allows the approximate mass conservation relation to be combined with the unapproximated momentum and thermodynamic equations to yield a closed system with attractive energy conservation properties. The influence of pressure on the pseudo-density, along with the explicit (x,t) dependence of ρ* is determined entirely by the hydrostatically balanced reference state.Scale analysis shows that the pseudo-incompressible approximation is applicable to motions for which ${\cal M})$2 ≪ min(1,${\cal R})$2, where ${\cal M})$ is the Mach number and ${\cal R}$ the Rossby number. This assumption is easy to satisfy for small-scale atmospheric motions in which the Earth's rotation may be neglected and is also satisfied for quasi-geostrophic synoptic-scale motions, but not planetary-scale waves. This scaling assumption can, however, be relaxed to allow the accurate representation of planetary-scale motions if the pressure in the time-evolving reference state is computed with sufficient accuracy that the large-scale components of the pseudo-incompressible pressure represent small corrections to the total pressure, in which case the full solution to both the pseudo-incompressible and reference-state equations has the potential to accurately model all non-acoustic atmospheric motions.


Author(s):  
John J. McCoy ◽  
Ben Zion Steinberg

Abstract A spatially local region of mechanical property heterogeneity is a source of scattering, by which a structure-borne mechanical wavefield is released as sound, to a surrounding fluid. We consider the case of a scatterer which is of the order of the size of the wavelength of a plate-wave field for a frequency which is below coincidence. A design strategy for reducing the strength of the scattered sound field in the fluid, at far-field distances from the scatterer, by adding a small-scale structure to the heterogenity, is presented. The design is accomplished in a wavelet-based phase-space. Emphasized is a significant distinction required of the added structure, depending on the heterogeneity applying to a measure of the local mass density or the local bending stiffness.


Sign in / Sign up

Export Citation Format

Share Document