Shear-induced diffusion in cohesive granular flows: effect of enduring clusters

2018 ◽  
Vol 858 ◽  
Author(s):  
Matthew Macaulay ◽  
Pierre Rognon

We investigate the effect of intergranular cohesive forces on the properties of self-diffusion in dense granular flows. The study is based on a series of simulated plane shear flows at different inertial and cohesion numbers, in which transverse diffusivities are measured. Results evidence an increase in diffusivity by up to two orders of magnitude when introducing cohesion. This strong effect is analysed using the Green–Kubo framework, expressing the diffusivity in terms of instantaneous grain velocity fluctuations and their time correlation. This analysis shows that cohesion, by forming enduring clusters in the flow, enhances the velocity fluctuations and their time persistence, which both contribute to enhancing grain mixing and self-diffusion.

2021 ◽  
Vol 249 ◽  
pp. 03035
Author(s):  
Matthew Macaulay ◽  
Pierre Rognon

This paper is concerned with the physical mechanisms controlling shear-induced diffusion in dense granular flows. The starting point is that of the granular random walk occurring in diluted granular flows, which underpins Bagnold’s scaling relating the coefficient of self-diffusion to the grain size and shear rate. By means of DEM simulations of plane shear flows, we measure some deviations from this scaling in dense granular flows with and without contact adhesion. We propose to relate these deviations to the development of correlated motion of grains in these flows, which impacts the magnitude of grain velocity fluctuations and their time persistence.


Soft Matter ◽  
2021 ◽  
Author(s):  
Riccardo Artoni ◽  
Michele Larcher ◽  
James T. Jenkins ◽  
Patrick Richard

The self-diffusivity tensor in homogeneously sheared dense granular flows is anisotropic. We show how its components depend on solid fraction, restitution coefficient, shear rate, and granular temperature.


Author(s):  
Olivier Pouliquen ◽  
Yoel Forterre

A non-local theory is proposed to model dense granular flows. The idea is to describe the rearrangements occurring when a granular material is sheared as a self-activated process. A rearrangement at one position is triggered by the stress fluctuations induced by rearrangements elsewhere in the material. Within this framework, the constitutive law, which gives the relation between the shear rate and the stress distribution, is written as an integral over the entire flow. Taking into account the finite time of local rearrangements, the model is applicable from the quasi-static regime up to the inertial regime. We have checked the prediction of the model in two different configurations, namely granular flows down inclined planes and plane shear under gravity, and we show that many of the experimental observations are predicted within the self-activated model.


2014 ◽  
Vol 764 ◽  
pp. 171-192 ◽  
Author(s):  
Pierre G. Rognon ◽  
Thomas Miller ◽  
Bloen Metzger ◽  
Itai Einav

AbstractWe explore how the rheology of dense granular flows is affected by the presence of sidewalls. The study is based on discrete element method simulations of plane-shear flows between two rough walls, prescribing both the normal stress and the shear rate. Results confirm previous observations for different systems: large layers near the walls develop where the local viscosity is not constant, but decreases when approaching the walls. The size of these layers can reach several dozen grain diameters, and is found to increase when the flow decelerates, as a power law of the inertial number. Two non-local models are found to adequately explain such features, namely the kinetic elasto-plastic fluidity (KEP) model and the eddy viscosity model (EV). The analysis of the internal kinematics further shows that the vorticity and its associated length scale may be a key component of these non-local behaviours.


Shock Waves ◽  
2007 ◽  
Vol 17 (5) ◽  
pp. 337-349 ◽  
Author(s):  
Piroz Zamankhan

2010 ◽  
Author(s):  
Ashish V. Orpe ◽  
Chris H. Rycroft ◽  
Arshad A. Kudrolli ◽  
Joe Goddard ◽  
Pasquale Giovine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document