inertial regime
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 3)

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2964
Author(s):  
Ranran Fang ◽  
Xianhang Zhang ◽  
Jiangen Zheng ◽  
Zhonglin Pan ◽  
Chen Yang ◽  
...  

An advanced superwicking aluminum material based on a microgroove surface structure textured with both laser-induced periodic surface structures and fine microholes was produced by direct femtosecond laser nano/microstructuring technology. The created material demonstrates excellent wicking performance in a temperature range of 23 to 120 °C. The experiments on wicking dynamics show a record-high velocity of water spreading that achieves about 450 mm/s at 23 °C and 320 mm/s at 120 °C when the spreading water undergoes intensive boiling. The lifetime of classic Washburn capillary flow dynamics shortens as the temperature increases up to 80 °C. The effects of evaporation and boiling on water spreading become significant above 80 °C, resulting in vanishing of Washburn’s dynamics. Both the inertial and visco-inertial flow regimes are insignificantly affected by evaporation at temperatures below the boiling point of water. The boiling effect on the inertial regime is small at 120 °C; however, its effect on the visco-inertial regime is essential. The created material with effective wicking performance under water boiling conditions can find applications in Maisotsenko cycle (M-cycle) high-temperature heat/mass exchangers for enhancing power generation efficiency that is an important factor in reducing CO2 emissions and mitigation of the global climate change.


2021 ◽  
Vol 929 ◽  
Author(s):  
Saman Ebrahimi ◽  
Prosenjit Bagchi

A computational study is presented on cross-stream migration and focusing of deformable capsules in curved microchannels of square and rectangular sections under inertial and non-inertial regimes. The numerical methodology is based on immersed boundary methods for fluid–structure coupling, a finite-volume-based flow solver and finite-element method for capsule deformation. Different focusing behaviours in the two regimes are predicted that arise due to the interplay of inertia, deformation, altered shear gradient, streamline curvature effect and secondary flow. In the non-inertial regime, a single-point focusing occurs on the central plane, and at a radial location between the interior face (i.e. face with highest curvature) of the channel and the location of zero shear. The focusing position is nearly independent of capsule deformability (represented by the capillary number, $Ca$ ). A two-step migration is observed that is comprised of a faster radial migration, followed by a slower migration toward the centre plane. The focusing location progressively moves further toward the interior face with increasing curvature and width, but decreasing height. In the inertial regime, single-point focusing is observed near the interior face for channel Reynolds number $Re_{C}\sim {O}(1)$ , that is also highly sensitive to $Re_{C}$ and $Ca$ , and moves progressively toward the exterior face with increasing $Re_{C}$ but decreasing $Ca$ . As $Re_{C}$ increases by an order, secondary flow becomes stronger, and two focusing locations appear close to the centres of the Dean vortices. This location becomes practically independent of $Ca$ at even higher inertia. The inertial focusing positions move progressively toward the exterior face with increasing channel width and decreasing height. For wider channels, the equilibrium location is further toward the exterior face than the vortex centre.


Author(s):  
Janine Birnbaum ◽  
Einat Lev ◽  
Ed W. Llewellin

Three-phase suspensions, of liquid that suspends dispersed solid particles and gas bubbles, are common in both natural and industrial settings. Their rheology is poorly constrained, particularly for high total suspended fractions (≳0.5). We use a dam-break consistometer to characterize the rheology of suspensions of (Newtonian) corn syrup, plastic particles and CO 2 bubbles. The study is motivated by a desire to understand the rheology of magma and lava. Our experiments are scaled to the volcanic system: they are conducted in the non-Brownian, non-inertial regime; bubble capillary number is varied across unity; and bubble and particle fractions are 0 ≤  ϕ gas  ≤ 0.82 and 0 ≤  ϕ solid  ≤ 0.37, respectively. We measure flow-front velocity and invert for a Herschel–Bulkley rheology model as a function of ϕ gas , ϕ solid , and the capillary number. We find a stronger increase in relative viscosity with increasing ϕ gas in the low to intermediate capillary number regime than predicted by existing theory, and find both shear-thinning and shear-thickening effects, depending on the capillary number. We apply our model to the existing community code for lava flow emplacement, PyFLOWGO, and predict increased viscosity and decreased velocity compared with current rheological models, suggesting existing models may not adequately account for the role of bubbles in stiffening lavas.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Taisuke Matsuno ◽  
Seiya Terasaki ◽  
Kanako Kogashi ◽  
Ryosuke Katsuno ◽  
Hiroyuki Isobe

AbstractThe internal hollow space of carbon nanotubes provides a unique nanometre-sized space to capture various molecular entities. The inner space circumfused by sp2-carbon networks can also encapsulate diamondoid molecules to afford sp2/sp3-hybrid nanocarbon peapods that have recently emerged as unique nanostructures. In this study, the sp2/sp3-hybrid peapods have been mimicked by adopting a cylindrical molecule and the smallest diamondoid, i.e., adamantane, to demonstrate the existence of ultrafast rotational motion. The solid-state rotational frequency is measured by NMR spectroscopy to record 1.06 THz that is, to the best of our knowledge, the largest value recorded for solid-state rotations of molecules. Theoretical calculations reveal that multivalent CH-π hydrogen bonds anchored the diamondoid guest on the π-wall of the cylindrical host. The weak hydrogen bonds are prone not only to cleave but also to regenerate at the interfaces, which give freedom to the guest for ultrafast isotropic rotations in the inertial regime.


2021 ◽  
Vol 33 (6) ◽  
pp. 062112
Author(s):  
Véronique Chireux ◽  
Philippe Tordjeman ◽  
Frédéric Risso
Keyword(s):  

Lab on a Chip ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 3910-3923
Author(s):  
Matteo Antognoli ◽  
Daniel Stoecklein ◽  
Chiara Galletti ◽  
Elisabetta Brunazzi ◽  
Dino Di Carlo

A fast method for designing optimal sequences of passive mixing units is provided for inertial flows. Intense mixing is achieved through highly-controlled stretching of the fluid contact surfaces.


2020 ◽  
Vol 32 (10) ◽  
pp. 101906
Author(s):  
A. Semati ◽  
E. Amani ◽  
F. Saffaraval ◽  
M. Saffar-Avval

2020 ◽  
Vol 117 (28) ◽  
pp. 16207-16213 ◽  
Author(s):  
Philipp Rothemund ◽  
Sophie Kirkman ◽  
Christoph Keplinger

Nature has inspired the design of robots in which soft actuators enable tasks such as handling of fragile objects and adapting to unstructured environments. Those tasks are difficult for traditional robots, which predominantly consist of hard components. Electrohydraulic soft actuators are liquid-filled shells that deform upon the application of electric fields; they excel among soft actuators with muscle-like force outputs and actuation strains, and with actuation frequencies above 100 Hz. However, the fundamental physics that governs the dynamics of electrohydraulic soft actuators is unexplored. Here, we study the dynamics of electrohydraulic soft actuators using the Peano-HASEL (hydraulically amplified self-healing electrostatic) actuator as a model system. Using experiments and a scaling analysis, we discover two dynamic regimes: a regime in which viscous dissipation reduces the actuation speed and a regime governed by inertial effects in which high-speed actuation is possible. For each regime, we derive a timescale that describes the influence of geometry, materials system, and applied external loads on the actuation speed. We also derive a model to study the dynamic behavior of Peano-HASEL actuators in both regimes. Although this analysis focuses on the Peano-HASEL actuator, the presented results may readily be generalized to other electrohydraulic actuators. When designed to operate in the inertial regime, electrohydraulic actuators will enable bio-inspired robots with unprecedented speeds of motion.


Sign in / Sign up

Export Citation Format

Share Document