scholarly journals Direct numerical simulation of turbulent mass transfer at the surface of an open channel flow

2022 ◽  
Vol 933 ◽  
Author(s):  
Michele Pinelli ◽  
H. Herlina ◽  
J.G. Wissink ◽  
M. Uhlmann

We present direct numerical simulation results of turbulent open channel flow at bulk Reynolds numbers up to 12 000, coupled with (passive) scalar transport at Schmidt numbers up to 200. Care is taken to capture the very large-scale motions which appear already for relatively modest Reynolds numbers. The transfer velocity at the flat, free surface is found to scale with the Schmidt number to the power ‘ $-1/2$ ’, in accordance with previous studies and theoretical predictions for uncontaminated surfaces. The scaling of the transfer velocity with Reynolds number is found to vary, depending on the Reynolds number definition used. To compare the present results with those obtained in other systems, we define a turbulent Reynolds number at the edge of the surface-influenced layer. This allows us to probe the two-regime model of Theofanous et al. (Intl J. Heat Mass Transfer, vol. 19, 1976, pp. 613–624), which is found to correctly predict that small-scale vortices significantly affect the mass transfer for turbulent Reynolds numbers larger than 500. It is further established that the root mean square of the surface divergence is, on average, proportional to the mean transfer velocity. However, the spatial correlation between instantaneous surface divergence and transfer velocity tends to decrease with increasing Schmidt number and increase with increasing Reynolds number. The latter is shown to be caused by an enhancement of the correlation in high-speed regions, which in turn is linked to the spatial distribution of surface-parallel vortices.

2017 ◽  
Vol 824 ◽  
pp. 722-765 ◽  
Author(s):  
Marco Mazzuoli ◽  
Markus Uhlmann

Direct numerical simulation of open-channel flow over a bed of spheres arranged in a regular pattern has been carried out at bulk Reynolds number and roughness Reynolds number (based on sphere diameter) of approximately 6900 and 120, respectively, for which the flow regime is fully rough. The open-channel height was approximately 5.5 times the diameter of the spheres. Extending the results obtained by Chan-Braun et al. (J. Fluid Mech., vol. 684, 2011, pp. 441–474) for an open-channel flow in the transitionally rough regime, the present purpose is to show how the flow structure changes as the fully rough regime is attained and, for the first time, to enable a direct comparison with experimental observations. Different statistical tools were used to investigate the flow field in the roughness sublayer and in the logarithmic region. The results indicate that, in the vicinity of the roughness elements, the average flow field is affected both by Reynolds number effects and by the geometrical features of the roughness, while at larger wall distances this is not the case, and roughness concepts can be applied. Thus, the roughness function is computed which in the present set-up can be expected to depend on the relative submergence. The flow–roughness interaction occurs mostly in the region above the virtual origin of the velocity profile, and the effect of form-induced velocity fluctuations is maximum at the level of sphere crests. In particular, the root mean square of fluctuations about the streamwise component of the average velocity field reflects the geometry of the spheres in the roughness sublayer and attains a maximum value just above the roughness elements. The latter is significantly weakened and shifted towards larger wall distances as compared to the transitionally rough regime or the case of a smooth wall. The spanwise length scale of turbulent velocity fluctuations in the vicinity of the sphere crests shows the same dependence on the distance from the wall as that observed over a smooth wall, and both vary with Reynolds number in a similar fashion. Moreover, the hydrodynamic force and torque experienced by the roughness elements are investigated and the footprint left by vortex structures on the stress acting on the sphere surface is observed. Finally, the possibility either to adopt an analogy between the hydrodynamic forces associated with the interaction of turbulent structures with a flat smooth wall or with the surface of the spheres is also discussed, distinguishing the skin-friction from the form-drag contributions both in the transitionally rough and in the fully rough regimes.


2001 ◽  
Vol 123 (2) ◽  
pp. 382-393 ◽  
Author(s):  
Hiroyuki Abe ◽  
Hiroshi Kawamura ◽  
Yuichi Matsuo

Direct numerical simulation (DNS) of a fully developed turbulent channel flow for various Reynolds numbers has been carried out to investigate the Reynolds number dependence. The Reynolds number is set to be Reτ=180, 395, and 640, where Reτ is the Reynolds number based on the friction velocity and the channel half width. The computation has been executed with the use of the finite difference method. Various turbulence statistics such as turbulence intensities, vorticity fluctuations, Reynolds stresses, their budget terms, two-point correlation coefficients, and energy spectra are obtained and discussed. The present results are compared with the ones of the DNSs for the turbulent boundary layer and the plane turbulent Poiseuille flow and the experiments for the channel flow. The closure models are also tested using the present results for the dissipation rate of the Reynolds normal stresses. In addition, the instantaneous flow field is visualized in order to examine the Reynolds number dependence for the quasi-coherent structures such as the vortices and streaks.


1993 ◽  
Vol 5 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Satoru Komori ◽  
Ryuichi Nagaosa ◽  
Yasuhiro Murakami ◽  
Satoshi Chiba ◽  
Katsuya Ishii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document