scholarly journals Purely elastic linear instabilities in parallel shear flows with free-slip boundary conditions

2021 ◽  
Vol 928 ◽  
Author(s):  
Martin Lellep ◽  
Moritz Linkmann ◽  
Bruno Eckhardt ◽  
Alexander Morozov

We perform a linear stability analysis of viscoelastic plane Couette and plane Poiseuille flows with free-slip boundary conditions. The fluid is described by the Oldroyd-B constitutive model, and the flows are driven by a suitable body force. We find that both types of flow become linearly unstable, and we characterise the spatial structure of the unstable modes. By performing a boundary condition homotopy from the free-slip to no-slip boundaries, we demonstrate that the unstable modes are directly related to the least stable modes of the no-slip problem, destabilised under the free-slip situation. We discuss how our observations can be used to study recently discovered purely elastic turbulence in parallel shear flows.

Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 142
Author(s):  
Xin He ◽  
Kai Zhang ◽  
Chunpei Cai

This paper presents our recent work on investigating velocity slip boundary conditions’ effects on supersonic flat plate boundary layer flow stability. The velocity-slip boundary conditions are adopted and the flow properties are obtained by solving boundary layer equations. Stability analysis of two such boundary layer flows is performed by using the Linear stability theory. A global method is first utilized to obtain approximate discrete mode values. A local method is then utilized to refine these mode values. All the modes in these two scenarios have been tracked upstream-wisely towards the leading edge and also downstream-wisely. The mode values for the no-slip flows agree well with the corresponding past results in the literature. For flows with slip boundary conditions, a stable and an unstable modes are detected. Mode tracking work is performed and the results illustrate that the resonance phenomenon between the stable and unstable modes is delayed with slip boundary conditions. The enforcement of the slip boundary conditions also shortens the unstable mode region. As to the conventional second mode, flows with slip boundary conditions can be more stable streamwisely when compared with the results for corresponding nonslip flows.


2017 ◽  
Vol 821 ◽  
pp. 31-58 ◽  
Author(s):  
Pierre-Yves Passaggia ◽  
Alberto Scotti ◽  
Brian White

The linear instability mechanisms of horizontal convection in a rectangular cavity forced by a horizontal buoyancy gradient along its surface are investigated using local and global stability analyses for a Prandtl number equal to unity. The results show that the stability of the base flow, a steady circulation characterized by a narrow descending plume and a broad upwelling region, depends on the Rayleigh number, $Ra$. For free-slip boundary conditions at a critical value of $Ra\approx 2\times 10^{7}$, the steady base flow becomes unstable to three-dimensional perturbations, characterized by counter-rotating vortices originating within the plume region. A Wentzel–Kramers–Brillouin (WKB) method applied along closed streamlines demonstrates that this instability is of a Rayleigh–Taylor type and can be used to accurately reconstruct the global instability mode. In the case of no-slip boundary conditions, the base flow also becomes unstable to a self-sustained two-dimensional instability whose critical Rayleigh number is $Ra\approx 1.7\times 10^{8}$. Beyond this critical $Ra$, two-dimensional equilibrium stationary states of the Navier–Stokes equations are computed using the selective frequency damping method. The two-dimensional onset of instability is shown to be characterized by a family of modes also originating within the plume. A local spatio-temporal stability analysis shows that the flow becomes absolutely unstable at the origin of the plume. Taken together, these results illustrate the mechanisms behind the onset of turbulence that has been observed in horizontal convection.


2021 ◽  
pp. 1-21
Author(s):  
Claudia Gariboldi ◽  
Takéo Takahashi

We consider an optimal control problem for the Navier–Stokes system with Navier slip boundary conditions. We denote by α the friction coefficient and we analyze the asymptotic behavior of such a problem as α → ∞. More precisely, we prove that if we take an optimal control for each α, then there exists a sequence of optimal controls converging to an optimal control of the same optimal control problem for the Navier–Stokes system with the Dirichlet boundary condition. We also show the convergence of the corresponding direct and adjoint states.


Author(s):  
Kangrui Zhou ◽  
Yueqiang Shang

AbstractBased on full domain partition, three parallel iterative finite-element algorithms are proposed and analyzed for the Navier–Stokes equations with nonlinear slip boundary conditions. Since the nonlinear slip boundary conditions include the subdifferential property, the variational formulation of these equations is variational inequalities of the second kind. In these parallel algorithms, each subproblem is defined on a global composite mesh that is fine with size h on its subdomain and coarse with size H (H ≫ h) far away from the subdomain, and then we can solve it in parallel with other subproblems by using an existing sequential solver without extensive recoding. All of the subproblems are nonlinear and are independently solved by three kinds of iterative methods. Compared with the corresponding serial iterative finite-element algorithms, the parallel algorithms proposed in this paper can yield an approximate solution with a comparable accuracy and a substantial decrease in computational time. Contributions of this paper are as follows: (1) new parallel algorithms based on full domain partition are proposed for the Navier–Stokes equations with nonlinear slip boundary conditions; (2) nonlinear iterative methods are studied in the parallel algorithms; (3) new theoretical results about the stability, convergence and error estimates of the developed algorithms are obtained; (4) some numerical results are given to illustrate the promise of the developed algorithms.


Sign in / Sign up

Export Citation Format

Share Document