Time-Dependent Creep Analysis for Life Assessment of Cylindrical Vessels Using First Order Shear Deformation Theory

2017 ◽  
Vol 33 (4) ◽  
pp. 461-474 ◽  
Author(s):  
M. D. Kashkoli ◽  
Kh. N. Tahan ◽  
M. Z. Nejad

AbstractIn the present study, assuming that the thermo-elastic creep response of the material is governed by Norton's law, an analytical solution has been developed for the purpose of time-dependent creep response for isotropic thick-walled cylindrical pressure vessels. To study the creep response, the first-order shear deformation theory (FSDT) is applied. To the best of the researchers’ knowledge, in the literature, there is no study carried out into FSDT for time-dependent creep response of cylindrical pressure vessels. The novelty of the present work is that it seeks to investigate creep life of the vessels made of 304L austenitic stainless steel (304L SS) using Larson-Miller Parameter (LMP) based on FSDT. Using this analytical solution, stress rates are calculated followed by an iterative method using initial thermo-elastic stresses at zero time. When the stress rates are known, the stresses at any time are obtained and then using LMP, creep life of the vessels are investigated. The Problem is also solved, using the finite element method (FEM), the result of which are compared with those of the analytical solution and good agreement was found. It is found that the temperature gradient distribution has significant influence on the creep life of the cylinder, so that the maximum creep life is located at the outer surface of the cylinder where the minimum value of temperature is located.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Jinxing Lai ◽  
Chunxia Guo ◽  
Junling Qiu ◽  
Haobo Fan

The classical shell theory (CST) without considering the shear deformation has been commonly used in the calculation of shells structures recently. However, the impact of theory of plates and shells subjected to the shear deformation on the calculation is increasingly pronounced along with the wide use of composite laminated structures. In this paper, based on first-order shear deformation theory (FSDT) of cylindrical shells, the displacement control differential equation of moderately thick cylindrical shells has been obtained, so has been the edge force at longitudinal of the shells. Meanwhile, a group of unit force is introduced to deduce the displacement of edge beam under the action of edge force. A join condition of moderately thick cylindrical ribbed shells is established according to the continuity of displacement as well. Most notably, the displacement analytical solution of bending problems of moderately thick cylindrical ribbed shells is obtained, which has profound theoretical significance for further improving the analytical solution of moderately thick cylindrical shells.


Author(s):  
Mohammad Reza Salehi Kolahi ◽  
Hossein Rahmani ◽  
Hossein Moeinkhah

In this paper, the first order shear deformation theory is used to derive an analytical formulation for shrink-fitted thick-walled functionally graded cylinders. It is assumed that the cylinders have constant Poisson’s ratio and the elastic modulus varies radially along the thickness with a power function. Furthermore, a finite element simulation is carried out using COMSOL Multiphysics, which has the advantage of defining material properties as analytical functions. The results from first order shear deformation theory are compared with the findings of both plane elasticity theory and FE simulation. The results of this study could be used to design and manufacture for elastic shrink-fitted FG cylinders.


Sign in / Sign up

Export Citation Format

Share Document