laminated structures
Recently Published Documents


TOTAL DOCUMENTS

356
(FIVE YEARS 65)

H-INDEX

25
(FIVE YEARS 5)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Yuke Liu ◽  
Wenyuan He ◽  
Jinyou Zhang ◽  
Zhenwu Liu ◽  
Fazi Chen ◽  
...  

The genesis of dolostone has long been puzzling for more than two centuries. Although much work has been done on investigating the process of dolomitization, little emphasis has been put on examining the diagenetic water redox condition with the wealthy geochemical information preserved in primary dolomite, which is believed to archive the aqueous environment as well as biotic and/or abiotic effects during formation. In situ interpretation with high resolution is a prerequisite in refined research of dolomite. Here, we reported the multielement imaging results of a lacustrine dolomite nodule with the host black shale from the Songliao Basin, northeast of China. Micro X-ray fluorescence (μ-XRF) with a spatial resolution down to 10 μm was used for in situ scanning. Two key parameter settings of the μ-XRF, including single-point exposure time and spatial resolution, were optimized to achieve a better result in a reasonable scanning time scale. The final imaging data graphically revealed dynamic variation of elemental distributions, including elements enriched in dolomite (e.g., Ca, Mg, Fe, and Mn), clastic quartz (Si), and clay minerals (e.g., Al and K) and redox-sensitive trace elements (e.g., Cr, Mo, V, and U). The well-preserved laminated structures inside the nodule and the features with a magnesium-rich core wrapped with an iron-concentric outer layer and a manganese-concentric shell together indicated its primary form as dolomite and a gradual transformation into ankerite as well as manganese-ankerite. The elemental variation indicates a varied bottom water redox condition, which involved from sulfidic to ferruginous and manganous zones. Here, we propose that the intermittent supplies of sulfate and Fe-/Mn-oxidized minerals interrupting the black shale deposition while favoring dolomitization might be brought by the oxidized and salted seawater. And this lacustrine dolomite is expected to be a potential fingerprint mineral in tracking the seawater intrusions to the Songliao Basin which happened 91 million years ago.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2969
Author(s):  
Yikun Wang ◽  
Wenhao Tan ◽  
Kaiqiang Zhu ◽  
Hao Luo ◽  
Guoqiang Zhao ◽  
...  

A Ka-band dual-polarization magnetoelectric (ME) dipole antenna array based on three-dimensional (3D)-printed technology with low sidelobe level (SLL) is proposed in this paper. The metal posts and cross-slots are explored to build a novel subarray with 2 × 2-unit ME-dipoles as the basic element. Creatively, a square waveguide to cross-slots transition with a pyramid horn cavity structure is investigated to feed the ME-dipole subarray. Furthermore, two types of power-tapering corporate-feed networks with laminated structures are used to design an 8 × 8-unit low-SLL array. The fabricated array has a relative bandwidth (VSWR < 2) of 14.3% and 17.1%, with a realized gain higher than 25.8 dBi and 26.1 dBi for the H-pol. and V-pol., respectively. The maximum radiation efficiency for both arrays is 73.2%. The measured first sidelobe levels are less than –17.5 dB for both polarizations. With competitive performance and low fabrication cost, the proposed dual-polarization ME-dipole antenna array would be valuable for polarization-agile radar and communication systems.


2021 ◽  
Vol 55 (7) ◽  
pp. 074004
Author(s):  
Xu Liu ◽  
Yuanying Qiu ◽  
Yuan Wei ◽  
Rui Yan

Abstract Flexible electronics have attracted rapidly growing interest owing to their great potential utility in numerous fundamental and emerging fields. However, there are urgent issues that remain as pending challenges in the interfacial stress and resulting failures of flexible electronics, especially for heterogeneous laminates of hard films adhered to soft polymer substrates under thermal and mechanical loads. This study focuses on the interfacial stress of a representative laminated structure, that is, the Si film is adhesively bonded to soft polydimethylsiloxane with a plastic polyethylene terephthalate substrate. An novel thermal-mechanical coupling model for this flexible structure is established in this paper, which presents the essential characteristics of interfacial shear stress. In addition, under thermal and mechanical loads, a typical case is investigated by combining an analytical solution with numerical results using the differential quadrature method. Furthermore, thermal and mechanical loads, material and geometry parameters are quantitatively explored for their influences on the interfacial shear stress. Targeted strategies for decreasing stress are also suggested. In conclusion, the thermal-mechanical model and application case analyses contribute to enhancing the design of interfacial reliability for flexible laminated structures.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3900
Author(s):  
Nils Vasic ◽  
Julian Steinmetz ◽  
Marion Görke ◽  
Michael Sinapius ◽  
Christian Hühne ◽  
...  

The article reports on the influence of annealing PVDF in an autoclave process on the PVDF phase composition. DSC, FTIR and XRD measurements serve to observe the phase changes in an already stretched, polarised and β-phase rich film. Annealing was conducted between 90 and 185 ∘C to cover a broad range of curing processes in an autoclave. The β-phase is found to be stable up to near the melting range at 170 ∘C. At 175 ∘C, the non-piezoelectric α-phase dominates and the piezoelectric γ- and γ′-phases appear. The γ-phase grows at elevated temperatures and replaces the β-phase. This observation stresses the importance of developing new methods to reactivate the polarisation after annealing, in particular for the integration of PVDF as a sensor in laminated structures, such as CFRP.


2021 ◽  
pp. 115019
Author(s):  
L. Peng ◽  
M.T. Tan ◽  
X. Zhang ◽  
G. Han ◽  
W. Xiong ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xi-Xia Li ◽  
Li Wang ◽  
Chang-Yu Li ◽  
Yi-Yu Wan ◽  
Yu-Chen Qian

In order to solve the transient heat transfer problem of the laminated structure, a semianalytical method based on calculus is adopted. First, the time domain is divided into tiny time segments; the analytical solution of transient heat transfer of laminated structures in the segments is derived by using the method of separation of variables. Then, the semianalytical solution of transient heat transfer in the whole time domain is obtained by circulation. The transient heat transfer of the three-layer structure is analyzed by the semianalytical solution. Three time-varying boundary conditions (a: square wave, b: triangular wave, and c: sinusoidal wave) are applied to the surface of the laminated structure. The influence of some key parameters on the temperature field of the laminated structure is analyzed. It is found that the surface temperature of the laminated structure increases fastest when heated by square wave, and the maximum temperature can reach at 377°C, the temperature rises the most slowly when heated by the triangular wave, and the maximum temperature is 347°C. The novelty of this work is that the analytical method is used to analyze the nonlinear heat transfer problem, which is different from the general numerical method, and this method can be applied to solve the heat transfer problem of general laminated structures.


Algorithms ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 286
Author(s):  
Ali Ahmid ◽  
Thien-My Dao ◽  
Ngan Van Le

Solving of combinatorial optimization problems is a common practice in real-life engineering applications. Trusses, cranes, and composite laminated structures are some good examples that fall under this category of optimization problems. Those examples have a common feature of discrete design domain that turn them into a set of NP-hard optimization problems. Determining the right optimization algorithm for such problems is a precious point that tends to impact the overall cost of the design process. Furthermore, reinforcing the performance of a prospective optimization algorithm reduces the design cost. In the current study, a comprehensive assessment criterion has been developed to assess the performance of meta-heuristic (MH) solutions in the domain of structural design. Thereafter, the proposed criterion was employed to compare five different variants of Ant Colony Optimization (ACO). It was done by using a well-known structural optimization problem of laminate Stacking Sequence Design (SSD). The initial results of the comparison study reveal that the Hyper-Cube Framework (HCF) ACO variant outperforms the others. Consequently, an investigation of further improvement led to introducing an enhanced version of HCFACO (or EHCFACO). Eventually, the performance assessment of the EHCFACO variant showed that the average practical reliability became more than twice that of the standard ACO, and the normalized price decreased more to hold at 28.92 instead of 51.17.


2021 ◽  
Vol 22 (5) ◽  
pp. 1427-1436
Author(s):  
Fei Cheng ◽  
Chenggong Zheng ◽  
Yunfei Liu ◽  
Wenjie Zuo ◽  
Xinzhe Wang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6390
Author(s):  
Gašper Glavan ◽  
Inna A. Belyaeva ◽  
Kevin Ruwisch ◽  
Joachim Wollschläger ◽  
Mikhail Shamonin

The voltage response to pulsed uniform magnetic fields and the accompanying bending deformations of laminated cantilever structures are investigated experimentally in detail. The structures comprise a magnetoactive elastomer (MAE) slab and a commercially available piezoelectric polymer multilayer. The magnetic field is applied vertically and the laminated structures are customarily fixed in the horizontal plane or, alternatively, slightly tilted upwards or downwards. Six different MAE compositions incorporating three concentrations of carbonyl iron particles (70 wt%, 75 wt% and 80 wt%) and two elastomer matrices of different stiffness are used. The dependences of the generated voltage and the cantilever’s deflection on the composition of the MAE layer and its thickness are obtained. The appearance of the voltage between the electrodes of a piezoelectric material upon application of a magnetic field is considered as a manifestation of the direct magnetoelectric (ME) effect in a composite laminated structure. The ME voltage response increases with the increasing total quantity of the soft-magnetic filler in the MAE layer. The relationship between the generated voltage and the cantilever’s deflection is established. The highest observed peak voltage around 5.5 V is about 8.5-fold higher than previously reported values. The quasi-static ME voltage coefficient for this type of ME heterostructures is about 50 V/A in the magnetic field of ≈100 kA/m, obtained for the first time. The results could be useful for the development of magnetic field sensors and energy harvesting devices relying on these novel polymer composites.


2021 ◽  
Vol 14 (3) ◽  
pp. 36-44
Author(s):  
S. Nikolenko ◽  
Svetlana Sazonova ◽  
Viktor Asminin

A study of the properties of dispersed-reinforced concrete and a study of the effect of dispersed reinforcement on the operation of structures was carried out, mainly with a static load of the same sign. Based on the results of experimental studies, a comparison was made of the work of dispersed-laminated structures under alternating dynamic action of high intensity with the work of reinforced concrete beam elements under similar influences. The results of experimental studies of cubes and prisms for static and dynamic compression are also presented. The results of experimental studies allow us to conclude that there is a significant effect of dispersed reinforcement on the operation of structures under the investigated influences and the feasibility of combined reinforcement of structures. The use of dispersed reinforcement in structures will increase the resistance of structures to such influences.


Sign in / Sign up

Export Citation Format

Share Document