An Euler–Poisson scheme for Lévy driven stochastic differential equations

2016 ◽  
Vol 53 (1) ◽  
pp. 262-278 ◽  
Author(s):  
A. Ferreiro-Castilla ◽  
A. E. Kyprianou ◽  
R. Scheichl

Abstract We describe an Euler scheme to approximate solutions of Lévy driven stochastic differential equations (SDEs) where the grid points are given by the arrival times of a Poisson process and thus are random. This result extends the previous work of Ferreiro-Castilla et al. (2014). We provide a complete numerical analysis of the algorithm to approximate the terminal value of the SDE and prove that the mean-square error converges with rate O(n-1/2). The only requirement of the methodology is to have exact samples from the resolvent of the Lévy process driving the SDE. Classical examples, such as stable processes, subclasses of spectrally one-sided Lévy processes, and new families, such as meromorphic Lévy processes (Kuznetsov et al. (2012), are examples for which our algorithm provides an interesting alternative to existing methods, due to its straightforward implementation and its robustness with respect to the jump structure of the driving Lévy process.

Author(s):  
Fabian A. Harang ◽  
Chengcheng Ling

AbstractWe investigate the space-time regularity of the local time associated with Volterra–Lévy processes, including Volterra processes driven by $$\alpha $$ α -stable processes for $$\alpha \in (0,2]$$ α ∈ ( 0 , 2 ] . We show that the spatial regularity of the local time for Volterra–Lévy process is $${\mathbb {P}}$$ P -a.s. inverse proportional to the singularity of the associated Volterra kernel. We apply our results to the investigation of path-wise regularizing effects obtained by perturbation of ordinary differential equations by a Volterra–Lévy process which has sufficiently regular local time. Following along the lines of Harang and Perkowski (2020), we show existence, uniqueness and differentiability of the flow associated with such equations.


2016 ◽  
Vol 17 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Xu Sun ◽  
Xiaofan Li ◽  
Yayun Zheng

Marcus stochastic differential equations (SDEs) often are appropriate models for stochastic dynamical systems driven by non-Gaussian Lévy processes and have wide applications in engineering and physical sciences. The probability density of the solution to an SDE offers complete statistical information on the underlying stochastic process. Explicit formula for the Fokker–Planck equation, the governing equation for the probability density, is well-known when the SDE is driven by a Brownian motion. In this paper, we address the open question of finding the Fokker–Planck equations for Marcus SDEs in arbitrary dimensions driven by non-Gaussian Lévy processes. The equations are given in a simple form that facilitates theoretical analysis and numerical computation. Several examples are presented to illustrate how the theoretical results can be applied to obtain Fokker–Planck equations for Marcus SDEs driven by Lévy processes.


2013 ◽  
Vol 14 (01) ◽  
pp. 1350007 ◽  
Author(s):  
HUIJIE QIAO ◽  
JINQIAO DUAN

After defining non-Gaussian Lévy processes for two-sided time, stochastic differential equations with such Lévy processes are considered. Solution paths for these stochastic differential equations have countable jump discontinuities in time. Topological equivalence (or conjugacy) for such an Itô stochastic differential equation and its transformed random differential equation is established. Consequently, a stochastic Hartman–Grobman theorem is proved for the linearization of the Itô stochastic differential equation. Furthermore, for Marcus stochastic differential equations, this topological equivalence is used to prove the existence of global random attractors.


1993 ◽  
Vol 132 ◽  
pp. 141-153 ◽  
Author(s):  
Toshiro Watanabe

In this paper it is shown that there is a unimodal Levy process with oscillating mode. After the author first constructed an example of such a self-decomposable process, Sato pointed out that it belongs to the class of semi-stable processes with β < 0. We prove that all non-symmetric semi-stable self-decomposable processes with β < 0 have oscillating modes.


2006 ◽  
Vol 38 (03) ◽  
pp. 768-791 ◽  
Author(s):  
A. B. Dieker

We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes. First, we find the joint distribution of the supremum and the epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. Second, we establish general properties of perturbed risk models, and obtain explicit fluctuation identities in the case that the Lévy process is spectrally positive. Third, we study the tail asymptotics for the supremum of a Lévy process under different assumptions on the tail of the Lévy measure.


Sign in / Sign up

Export Citation Format

Share Document