scholarly journals JUMP OPERATIONS FOR BOREL GRAPHS

2018 ◽  
Vol 83 (1) ◽  
pp. 13-28
Author(s):  
ADAM R. DAY ◽  
ANDREW S. MARKS

AbstractWe investigate the class of bipartite Borel graphs organized by the order of Borel homomorphism. We show that this class is unbounded by finding a jump operator for Borel graphs analogous to a jump operator of Louveau for Borel equivalence relations. The proof relies on a nonseparation result for iterated Fréchet ideals and filters due to Debs and Saint Raymond. We give a new proof of this fact using effective descriptive set theory. We also investigate an analogue of the Friedman-Stanley jump for Borel graphs. This analogue does not yield a jump operator for bipartite Borel graphs. However, we use it to answer a question of Kechris and Marks by showing that there is a Borel graph with no Borel homomorphism to a locally countable Borel graph, but each of whose connected components has a countable Borel coloring.

2002 ◽  
Vol 02 (01) ◽  
pp. 1-80 ◽  
Author(s):  
S. JACKSON ◽  
A. S. KECHRIS ◽  
A. LOUVEAU

This paper develops the foundations of the descriptive set theory of countable Borel equivalence relations on Polish spaces with particular emphasis on the study of hyperfinite, amenable, treeable and universal equivalence relations.


2013 ◽  
Vol 78 (2) ◽  
pp. 439-458 ◽  
Author(s):  
Vadim Kulikov

AbstractIt is shown that the power set of κ ordered by the subset relation modulo various versions of the non-stationary ideal can be embedded into the partial order of Borel equivalence relations on 2κ under Borel reducibility. Here κ is an uncountable regular cardinal with κ<κ = κ.


2018 ◽  
Vol 29 (1) ◽  
pp. 396-428 ◽  
Author(s):  
Joan R. Moschovakis ◽  
Yiannis N. Moschovakis

2018 ◽  
Vol 83 (2) ◽  
pp. 766-789 ◽  
Author(s):  
MERLIN CARL ◽  
PHILIPP SCHLICHT

AbstractWe study randomness beyond${\rm{\Pi }}_1^1$-randomness and its Martin-Löf type variant, which was introduced in [16] and further studied in [3]. Here we focus on a class strictly between${\rm{\Pi }}_1^1$and${\rm{\Sigma }}_2^1$that is given by the infinite time Turing machines (ITTMs) introduced by Hamkins and Kidder. The main results show that the randomness notions associated with this class have several desirable properties, which resemble those of classical random notions such as Martin-Löf randomness and randomness notions defined via effective descriptive set theory such as${\rm{\Pi }}_1^1$-randomness. For instance, mutual randoms do not share information and a version of van Lambalgen’s theorem holds.Towards these results, we prove the following analogue to a theorem of Sacks. If a real is infinite time Turing computable relative to all reals in some given set of reals with positive Lebesgue measure, then it is already infinite time Turing computable. As a technical tool towards this result, we prove facts of independent interest about random forcing over increasing unions of admissible sets, which allow efficient proofs of some classical results about hyperarithmetic sets.


Sign in / Sign up

Export Citation Format

Share Document