descriptive set theory
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
pp. 103061
Author(s):  
Peter Holy ◽  
Marlene Koelbing ◽  
Philipp Schlicht ◽  
Wolfgang Wohofsky

2021 ◽  
Author(s):  
Yu-Lin Chou

We give,as a preliminary result, some topological characterizations of locally compact second-countable Hausdorff spaces. Then we show that a topological manifold, with boundary or not,is precisely a Polish space with a coordinate open cover; this connects geometry with descriptive set theory.


2020 ◽  
Vol 21 (01) ◽  
pp. 2050021
Author(s):  
Vassilios Gregoriades ◽  
Takayuki Kihara ◽  
Keng Meng Ng

We give a partial answer to an important open problem in descriptive set theory, the Decomposability Conjecture for Borel functions on an analytic subset of a Polish space to a separable metrizable space. Our techniques employ deep results from effective descriptive set theory and recursion theory. In fact it is essential to extend several prominent results in recursion theory (e.g. the Shore–Slaman Join Theorem) to the setting of Polish spaces. As a by-product we give both positive and negative results on the Martin Conjecture on the degree preserving Borel functions between Polish spaces. Additionally we prove results about the transfinite version as well as the computable version of the Decomposability Conjecture.


2020 ◽  
pp. 1-28
Author(s):  
ANTON BERNSHTEYN

The field of descriptive combinatorics investigates to what extent classical combinatorial results and techniques can be made topologically or measure-theoretically well behaved. This paper examines a class of coloring problems induced by actions of countable groups on Polish spaces, with the requirement that the desired coloring be Baire measurable. We show that the set of all such coloring problems that admit a Baire measurable solution for a particular free action $\unicode[STIX]{x1D6FC}$ is complete analytic (apart from the trivial situation when the orbit equivalence relation induced by $\unicode[STIX]{x1D6FC}$ is smooth on a comeager set); this result confirms the ‘hardness’ of finding a topologically well-behaved coloring. When $\unicode[STIX]{x1D6FC}$ is the shift action, we characterize the class of problems for which $\unicode[STIX]{x1D6FC}$ has a Baire measurable coloring in purely combinatorial terms; it turns out that closely related concepts have already been studied in graph theory with no relation to descriptive set theory. We remark that our framework permits a wholly dynamical interpretation (with colorings corresponding to equivariant maps to a given subshift), so this article can also be viewed as a contribution to generic dynamics.


2019 ◽  
Vol 116 (38) ◽  
pp. 18883-18887 ◽  
Author(s):  
David Schrittesser ◽  
Asger Törnquist

We show that if all collections of infinite subsets of N have the Ramsey property, then there are no infinite maximal almost disjoint (mad) families. The implication is proved in Zermelo–Fraenkel set theory with only weak choice principles. This gives a positive solution to a long-standing problem that goes back to Mathias [A. R. D. Mathias, Ann. Math. Logic 12, 59–111 (1977)]. The proof exploits an idea which has its natural roots in ergodic theory, topological dynamics, and invariant descriptive set theory: We use that a certain function associated to a purported mad family is invariant under the equivalence relation E0 and thus is constant on a “large” set. Furthermore, we announce a number of additional results about mad families relative to more complicated Borel ideals.


Aviation ◽  
2019 ◽  
Vol 23 (2) ◽  
pp. 36-42 ◽  
Author(s):  
Ivan Ostroumov ◽  
Nataliia Kuzmenko ◽  
Volodymur Kharchenko

Aircraft navigation within controlled airspace is carried out using on-board positioning systems capable to determine the coordinates of aircraft location with the system performance that meet navigation specifications requirements. The article proposes a descriptive set theory use to navigational aids network analysis in order to determine the positioning performance of the navigation system at predefined airspace volume. The uniqueness of the study is shape evaluation of areas that correspond to navigation specifications requirements and area research of different positioning techniques based on navigational aids such as DME/DME, VOR/DME, and VOR/VOR. An analysis of Ukrainian airspace has been done as an example.


2018 ◽  
Vol 83 (2) ◽  
pp. 766-789 ◽  
Author(s):  
MERLIN CARL ◽  
PHILIPP SCHLICHT

AbstractWe study randomness beyond${\rm{\Pi }}_1^1$-randomness and its Martin-Löf type variant, which was introduced in [16] and further studied in [3]. Here we focus on a class strictly between${\rm{\Pi }}_1^1$and${\rm{\Sigma }}_2^1$that is given by the infinite time Turing machines (ITTMs) introduced by Hamkins and Kidder. The main results show that the randomness notions associated with this class have several desirable properties, which resemble those of classical random notions such as Martin-Löf randomness and randomness notions defined via effective descriptive set theory such as${\rm{\Pi }}_1^1$-randomness. For instance, mutual randoms do not share information and a version of van Lambalgen’s theorem holds.Towards these results, we prove the following analogue to a theorem of Sacks. If a real is infinite time Turing computable relative to all reals in some given set of reals with positive Lebesgue measure, then it is already infinite time Turing computable. As a technical tool towards this result, we prove facts of independent interest about random forcing over increasing unions of admissible sets, which allow efficient proofs of some classical results about hyperarithmetic sets.


2018 ◽  
Vol 83 (2) ◽  
pp. 443-460
Author(s):  
ALEXANDER MELNIKOV ◽  
ANTONIO MONTALBÁN

AbstractUsing methods from computable analysis, we establish a new connection between two seemingly distant areas of logic: computable structure theory and invariant descriptive set theory. We extend several fundamental results of computable structure theory to the more general setting of topological group actions. As we will see, the usual action of ${S_\infty }$ on the space of structures in a given language is effective in a certain algorithmic sense that we need, and ${S_\infty }$ itself carries a natural computability structure (to be defined). Among other results, we give a sufficient condition for an orbit under effective ${\cal G}$-action of a computable Polish ${\cal G}$ to split into infinitely many disjoint effective orbits. Our results are not only more general than the respective results in computable structure theory, but they also tend to have proofs different from (and sometimes simpler than) the previously known proofs of the respective prototype results.


2018 ◽  
Vol 461 (1) ◽  
pp. 916-928 ◽  
Author(s):  
S. Bautista ◽  
C.A. Morales ◽  
H. Villavicencio

2018 ◽  
Vol 83 (1) ◽  
pp. 13-28
Author(s):  
ADAM R. DAY ◽  
ANDREW S. MARKS

AbstractWe investigate the class of bipartite Borel graphs organized by the order of Borel homomorphism. We show that this class is unbounded by finding a jump operator for Borel graphs analogous to a jump operator of Louveau for Borel equivalence relations. The proof relies on a nonseparation result for iterated Fréchet ideals and filters due to Debs and Saint Raymond. We give a new proof of this fact using effective descriptive set theory. We also investigate an analogue of the Friedman-Stanley jump for Borel graphs. This analogue does not yield a jump operator for bipartite Borel graphs. However, we use it to answer a question of Kechris and Marks by showing that there is a Borel graph with no Borel homomorphism to a locally countable Borel graph, but each of whose connected components has a countable Borel coloring.


Sign in / Sign up

Export Citation Format

Share Document