Borel reductions and cub games in generalised descriptive set theory

2013 ◽  
Vol 78 (2) ◽  
pp. 439-458 ◽  
Author(s):  
Vadim Kulikov

AbstractIt is shown that the power set of κ ordered by the subset relation modulo various versions of the non-stationary ideal can be embedded into the partial order of Borel equivalence relations on 2κ under Borel reducibility. Here κ is an uncountable regular cardinal with κ<κ = κ.

2002 ◽  
Vol 02 (01) ◽  
pp. 1-80 ◽  
Author(s):  
S. JACKSON ◽  
A. S. KECHRIS ◽  
A. LOUVEAU

This paper develops the foundations of the descriptive set theory of countable Borel equivalence relations on Polish spaces with particular emphasis on the study of hyperfinite, amenable, treeable and universal equivalence relations.


2018 ◽  
Vol 83 (1) ◽  
pp. 13-28
Author(s):  
ADAM R. DAY ◽  
ANDREW S. MARKS

AbstractWe investigate the class of bipartite Borel graphs organized by the order of Borel homomorphism. We show that this class is unbounded by finding a jump operator for Borel graphs analogous to a jump operator of Louveau for Borel equivalence relations. The proof relies on a nonseparation result for iterated Fréchet ideals and filters due to Debs and Saint Raymond. We give a new proof of this fact using effective descriptive set theory. We also investigate an analogue of the Friedman-Stanley jump for Borel graphs. This analogue does not yield a jump operator for bipartite Borel graphs. However, we use it to answer a question of Kechris and Marks by showing that there is a Borel graph with no Borel homomorphism to a locally countable Borel graph, but each of whose connected components has a countable Borel coloring.


1993 ◽  
Vol 58 (3) ◽  
pp. 1052-1070 ◽  
Author(s):  
Alan Mekler ◽  
Jouko Väänänen

AbstractWe study descriptive set theory in the space by letting trees with no uncountable branches play a similar role as countable ordinals in traditional descriptive set theory. By using such trees, we get, for example, a covering property for the class of -sets of .We call a family of trees universal for a class of trees if ⊆ and every tree in can be order-preservingly mapped into a tree in . It is well known that the class of countable trees with no infinite branches has a universal family of size ℵ1. We shall study the smallest cardinality of a universal family for the class of trees of cardinality ≤ ℵ1 with no uncountable branches. We prove that this cardinality can be 1 (under ¬CH) and any regular cardinal κ which satisfies (under CH). This bears immediately on the covering property of the -subsets of the space .We also study the possible cardinalities of definable subsets of . We show that the statement that every definable subset of has cardinality <ωn or cardinality is equiconsistent with ZFC (if n ≥ 3) and with ZFC plus an inaccessible (if n = 2).Finally, we define an analogue of the notion of a Borel set for the space and prove a Souslin-Kleene type theorem for this notion.


2014 ◽  
Vol 20 (1) ◽  
pp. 94-97
Author(s):  
Natasha Dobrinen

1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


2018 ◽  
Vol 29 (1) ◽  
pp. 396-428 ◽  
Author(s):  
Joan R. Moschovakis ◽  
Yiannis N. Moschovakis

Sign in / Sign up

Export Citation Format

Share Document