J. W. Addison. Separation principles in the hierarchies of classical and effective descriptive set theory. Fundamenta mathematicae, vol. 46 no. 2 (1959), pp. 123–135. - J. W. Addison. The theory of hierarchies. Logic, methodology and philosophy of science, Proceedings of the 1960 International Congress, edited by Ernest Nagel, Patrick Suppes, and Alfred Tarski, Stanford University Press, Stanford, Calif., 1962, pp. 26–37. - J. W. Addison. Some problems in hierarchy theory. Recursive function theory, Proceedings of symposia in pure mathematics, vol. 5, American Mathematical Society, Providence1962, pp. 123–130.

1964 ◽  
Vol 29 (1) ◽  
pp. 60-62
Author(s):  
Donald L. Kreider
2018 ◽  
Vol 29 (1) ◽  
pp. 396-428 ◽  
Author(s):  
Joan R. Moschovakis ◽  
Yiannis N. Moschovakis

2018 ◽  
Vol 83 (2) ◽  
pp. 766-789 ◽  
Author(s):  
MERLIN CARL ◽  
PHILIPP SCHLICHT

AbstractWe study randomness beyond${\rm{\Pi }}_1^1$-randomness and its Martin-Löf type variant, which was introduced in [16] and further studied in [3]. Here we focus on a class strictly between${\rm{\Pi }}_1^1$and${\rm{\Sigma }}_2^1$that is given by the infinite time Turing machines (ITTMs) introduced by Hamkins and Kidder. The main results show that the randomness notions associated with this class have several desirable properties, which resemble those of classical random notions such as Martin-Löf randomness and randomness notions defined via effective descriptive set theory such as${\rm{\Pi }}_1^1$-randomness. For instance, mutual randoms do not share information and a version of van Lambalgen’s theorem holds.Towards these results, we prove the following analogue to a theorem of Sacks. If a real is infinite time Turing computable relative to all reals in some given set of reals with positive Lebesgue measure, then it is already infinite time Turing computable. As a technical tool towards this result, we prove facts of independent interest about random forcing over increasing unions of admissible sets, which allow efficient proofs of some classical results about hyperarithmetic sets.


2018 ◽  
Vol 83 (1) ◽  
pp. 13-28
Author(s):  
ADAM R. DAY ◽  
ANDREW S. MARKS

AbstractWe investigate the class of bipartite Borel graphs organized by the order of Borel homomorphism. We show that this class is unbounded by finding a jump operator for Borel graphs analogous to a jump operator of Louveau for Borel equivalence relations. The proof relies on a nonseparation result for iterated Fréchet ideals and filters due to Debs and Saint Raymond. We give a new proof of this fact using effective descriptive set theory. We also investigate an analogue of the Friedman-Stanley jump for Borel graphs. This analogue does not yield a jump operator for bipartite Borel graphs. However, we use it to answer a question of Kechris and Marks by showing that there is a Borel graph with no Borel homomorphism to a locally countable Borel graph, but each of whose connected components has a countable Borel coloring.


Sign in / Sign up

Export Citation Format

Share Document