Repeated vector products

2020 ◽  
Vol 104 (561) ◽  
pp. 460-468
Author(s):  
A. F. Beardon ◽  
N. Lord

In [1] the second author observed that it is possible to have a binary operation * on a set X with the property that two different arrangements of brackets in a given combination x1 * … * xn of elements of X yield the same outcome for all choices of the xj. For example, for the operation of subtraction on the set of real numbers, we have $$\left[ {a - \left( {b - c} \right)} \right] - d = a - \left[ {b - \left( {c - d} \right)} \right]$$ for all real numbers a, b, c and d. The author then asked whether or not a similar example might hold for an n-fold vector product on three-dimensional Euclidean space3. We shall show here that no such example can exist; thus two different arrangements of brackets in a repeated vector product will, for some vectors, yield different answers.

1963 ◽  
Vol 15 ◽  
pp. 157-168 ◽  
Author(s):  
Josephine Mitchell

Let be a closed rectifiable curve, not going through the origin, which bounds a domain Ω in the complex ζ-plane. Let X = (x, y, z) be a point in three-dimensional euclidean space E3 and setThe Bergman-Whittaker operator defined by


1960 ◽  
Vol 12 ◽  
pp. 297-302 ◽  
Author(s):  
L. J. Mordell

Let Ai, A2, … , An be n linearly independent points in n-dimensional Euclidean space of a lattice Λ. The points ± A1, ±A2, . . , ±An define a closed n-dimensional octahedron (or “cross poly tope“) K with centre at the origin O. Our problem is to find a basis for the lattices Λ which have no points in K except ±A1, ±A2, … , ±An.Let the position of a point P in space be defined vectorially by1where the p are real numbers. We have the following results.When n = 2, it is well known that a basis is2When n = 3, Minkowski (1) proved that there are two types of lattices, with respective bases3When n = 4, there are six essentially different bases typified by A1, A2, A3 and one of4In all expressions of this kind, the signs are independent of each other and of any other signs. This result is a restatement of a result by Brunngraber (2) and a proof is given by Wolff (3).


2008 ◽  
Vol 17 (4) ◽  
pp. 619-625 ◽  
Author(s):  
JÓZSEF SOLYMOSI ◽  
CSABA D. TÓTH

Given a set of s points and a set of n2 lines in three-dimensional Euclidean space such that each line is incident to n points but no n lines are coplanar, we show that s = Ω(n11/4). This is the first non-trivial answer to a question recently posed by Jean Bourgain.


1956 ◽  
Vol 8 ◽  
pp. 256-262 ◽  
Author(s):  
J. De Groot

1. Introduction. We consider the group of proper orthogonal transformations (rotations) in three-dimensional Euclidean space, represented by real orthogonal matrices (aik) (i, k = 1,2,3) with determinant + 1 . It is known that this rotation group contains free (non-abelian) subgroups; in fact Hausdorff (5) showed how to find two rotations P and Q generating a group with only two non-trivial relationsP2 = Q3 = I.


Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2610-2628 ◽  
Author(s):  
Davood Naderi ◽  
Mehdi Tale-Masouleh ◽  
Payam Varshovi-Jaghargh

SUMMARYIn this paper, the forward kinematic analysis of 3-degree-of-freedom planar parallel robots with identical limb structures is presented. The proposed algorithm is based on Study's kinematic mapping (E. Study, “von den Bewegungen und Umlegungen,” Math. Ann.39, 441–565 (1891)), resultant method, and the Gröbner basis in seven-dimensional kinematic space. The obtained solution in seven-dimensional kinematic space of the forward kinematic problem is mapped into three-dimensional Euclidean space. An alternative solution of the forward kinematic problem is obtained using resultant method in three-dimensional Euclidean space, and the result is compared with the obtained mapping result from seven-dimensional kinematic space. Both approaches lead to the same maximum number of solutions: 2, 6, 6, 6, 2, 2, 2, 6, 2, and 2 for the forward kinematic problem of planar parallel robots; 3-RPR, 3-RPR, 3-RRR, 3-RRR, 3-RRP, 3-RPP, 3-RPP, 3-PRR, 3-PRR, and 3-PRP, respectively.


Author(s):  
J. Angeles ◽  
M. J. Al-Daccak

Abstract The subject of this paper is the computation of the first three moments of bounded regions imbedded in the three-dimensional Euclidean space. The method adopted here is based upon a repeated application of Gauss’s Divergence Theorem to reduce the computation of the said moments — volume, vector first moment and inertia tensor — to line integration. Explicit, readily implementable formulae are developed to evaluate the said moments for arbitrary solids, given their piecewise-linearly approximated boundary. An example is included that illustrates the applicability of the formulae.


Sign in / Sign up

Export Citation Format

Share Document