vector product
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 35)

H-INDEX

17
(FIVE YEARS 2)

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Wolf-Dieter Richter

The geometric approach to generalized complex and three-dimensional hyper-complex numbers and more general algebraic structures being based upon a general vector space structure and a geometric multiplication rule which was only recently developed is continued here in dimension four and above. To this end, the notions of geometric vector product and geometric exponential function are extended to arbitrary finite dimensions and some usual algebraic rules known from usual complex numbers are replaced with new ones. An application for the construction of directional probability distributions is presented.


2021 ◽  
Vol 47 (6) ◽  
Author(s):  
J. Dölz ◽  
H. Egger ◽  
V. Shashkov

AbstractThe numerical solution of dynamical systems with memory requires the efficient evaluation of Volterra integral operators in an evolutionary manner. After appropriate discretization, the basic problem can be represented as a matrix-vector product with a lower diagonal but densely populated matrix. For typical applications, like fractional diffusion or large-scale dynamical systems with delay, the memory cost for storing the matrix approximations and complete history of the data then becomes prohibitive for an accurate numerical approximation. For Volterra integral operators of convolution type, the fast and oblivious convolution quadrature method of Schädle, Lopez-Fernandez, and Lubich resolves this issue and allows to compute the discretized evaluation with N time steps in $O(N \log N)$ O ( N log N ) complexity and only requires $O(\log N)$ O ( log N ) active memory to store a compressed version of the complete history of the data. We will show that this algorithm can be interpreted as an ${{\mathscr{H}}}$ H -matrix approximation of the underlying integral operator. A further improvement can thus be achieved, in principle, by resorting to ${{\mathscr{H}}}^{2}$ H 2 -matrix compression techniques. Following this idea, we formulate a variant of the ${{\mathscr{H}}}^{2}$ H 2 -matrix-vector product for discretized Volterra integral operators that can be performed in an evolutionary and oblivious manner and requires only O(N) operations and $O(\log N)$ O ( log N ) active memory. In addition to the acceleration, more general asymptotically smooth kernels can be treated and the algorithm does not require a priori knowledge of the number of time steps. The efficiency of the proposed method is demonstrated by application to some typical test problems.


Geophysics ◽  
2021 ◽  
pp. 1-147
Author(s):  
Peng Yong ◽  
Romain Brossier ◽  
Ludovic Métivier

In order to exploit Hessian information in Full Waveform Inversion (FWI), the matrix-free truncated Newton method can be used. In such a method, Hessian-vector product computation is one of the major concerns due to the huge memory requirements and demanding computational cost. Using the adjoint-state method, the Hessian-vector product can be estimated by zero-lag cross-correlation of the first-order/second-order incident wavefields and the second-order/first-order adjoint wavefields. Different from the implementation in frequency-domain FWI, Hessian-vector product construction in the time domain becomes much more challenging as it is not affordable to store the entire time-dependent wavefields. The widely used wavefield recomputation strategy leads to computationally intensive tasks. We present an efficient alternative approach to computing the Hessian-vector product for time-domain FWI. In our method, discrete Fourier transform is applied to extract frequency-domain components of involved wavefields, which are used to compute wavefield cross-correlation in the frequency domain. This makes it possible to avoid reconstructing the first-order and second-order incident wavefields. In addition, a full-scattered-field approximation is proposed to efficiently simplify the second-order incident and adjoint wavefields computation, which enables us to refrain from repeatedly solving the first-order incident and adjoint equations for the second-order incident and adjoint wavefields (re)computation. With the proposed method, the computational time can be reduced by 70% and 80% in viscous media for Gauss-Newton and full-Newton Hessian-vector product construction, respectively. The effectiveness of our method is also verified in the frame of a 2D multi-parameter inversion, in which the proposed method almost reaches the same iterative convergence of the conventional time-domain implementation.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 342
Author(s):  
Wolf-Dieter Richter

Three-complex numbers are introduced for using a geometric vector product in the three-dimensional Euclidean vector space R3 and proving its equivalence with a spherical coordinate product. Based upon the definitions of the geometric power and geometric exponential functions, some Euler-type trigonometric representations of three-complex numbers are derived. Further, a general l23−complex algebraic structure together with its matrix, polynomial and variable basis vector representations are considered. Then, the classes of lp3-complex numbers are introduced. As an application, Euler-type formulas are used to construct directional probability laws on the Euclidean unit sphere in R3.


Author(s):  
José Ignacio Aliaga ◽  
Hartwig Anzt ◽  
Enrique S. Quintana-Ortí ◽  
Andrés E. Tomás ◽  
Yuhsiang M. Tsai

Sign in / Sign up

Export Citation Format

Share Document