scholarly journals HIGHER CODIMENSIONAL UEDA THEORY FOR A COMPACT SUBMANIFOLD WITH UNITARY FLAT NORMAL BUNDLE

2018 ◽  
Vol 238 ◽  
pp. 104-136
Author(s):  
TAKAYUKI KOIKE

Let $Y$ be a compact complex manifold embedded in a complex manifold with unitary flat normal bundle. Our interest is in a sort of the linearizability problem of a neighborhood of $Y$. As a higher codimensional generalization of Ueda’s result, we give a sufficient condition for the existence of a nonsingular holomorphic foliation on a neighborhood of $Y$ which includes $Y$ as a leaf with unitary-linear holonomy. We apply this result to the existence problem of a smooth Hermitian metric with semipositive curvature on a nef line bundle.


2018 ◽  
Vol 5 (1) ◽  
pp. 195-201
Author(s):  
Indranil Biswas ◽  
Mahan Mj ◽  
Misha Verbitsky

AbstractLet M be a compact complex manifold of dimension at least three and Π : M → X a positive principal elliptic fibration, where X is a compact Kähler orbifold. Fix a preferred Hermitian metric on M. In [14], the third author proved that every stable vector bundle on M is of the form L⊕ Π ⃰ B0, where B0 is a stable vector bundle on X, and L is a holomorphic line bundle on M. Here we prove that every stable Higgs bundle on M is of the form (L ⊕ Π ⃰B0, Π ⃰ ɸX), where (B0, ɸX) is a stable Higgs bundle on X and L is a holomorphic line bundle on M.



2021 ◽  
Vol 32 (03) ◽  
pp. 2150016
Author(s):  
Pak Tung Ho ◽  
Jinwoo Shin

Let [Formula: see text] be a compact complex manifold of complex dimension [Formula: see text] endowed with a Hermitian metric [Formula: see text]. The Chern-Yamabe problem is to find a conformal metric of [Formula: see text] such that its Chern scalar curvature is constant. In this paper, we prove that the solution to the Chern-Yamabe problem is unique under some conditions. On the other hand, we obtain some results related to the Chern-Yamabe soliton.



2007 ◽  
Vol 18 (05) ◽  
pp. 527-533
Author(s):  
YU-LIN CHANG

Let M be a compact complex manifold with a positive holomorphic line bundle L, and K be its canonical line bundle. We give some sufficient conditions for the non-vanishing of H0(M, K + L). We also show that the criterion can be applied to interesting classes of examples including all compact locally hermitian symmetric spaces of non-compact type, Mostow–Siu [10] surfaces, Kähler threefolds given by Deraux [3] and examples of Zheng [17].



2005 ◽  
Vol 07 (05) ◽  
pp. 583-596 ◽  
Author(s):  
MARCIO G. SOARES

We relate the characteristic numbers of the normal sheaf of a k-dimensional holomorphic foliation [Formula: see text] of a compact complex manifold Mn, to the characteristic numbers of the normal sheaf of a one-dimensional holomorphic foliation associated to [Formula: see text]. In case M is a complex projective space, we also obtain bounds for the degrees of the components of codimension k - 1 of the singular set of [Formula: see text].



2019 ◽  
Vol 31 (6) ◽  
pp. 1457-1466
Author(s):  
Takayuki Koike

AbstractLet C be a smooth elliptic curve embedded in a smooth complex surface X such that C is a leaf of a suitable holomorphic foliation of X. We investigate the complex analytic properties of a neighborhood of C under some assumptions on the complex dynamical properties of the holonomy function. As an application, we give an example of {(C,X)} in which the line bundle {[C]} is formally flat along C, however it does not admit a {C^{\infty}} Hermitian metric with semi-positive curvature. We also exhibit a family of embeddings of a fixed elliptic curve for which the positivity of normal bundles does not behave in a simple way.



2010 ◽  
Vol 53 (2) ◽  
pp. 373-383
Author(s):  
Tatyana Foth

AbstractLet L → X be a positive line bundle on a compact complex manifold X. For compact submanifolds Y, S of X and a holomorphic submersion Y → S with compact fibre, we study curvature of a natural connection on certain line bundles on S.



1997 ◽  
Vol 56 (2) ◽  
pp. 285-290
Author(s):  
S. Asserda

Let M be a complex manifold and L → M be a positive holomorphic line bundle over M equipped with a Hermitian metric h of class C2. If D ⊂⊂ M is a pseudoconvex domain which is relatively compact in M then there exists an integer r0 such that for every r ≥ r0 and for every connected holomorphic covering π: the covering is holomorphically convex with respect to holomorphic sections of .



2002 ◽  
Vol 45 (1) ◽  
pp. 83-90
Author(s):  
Kenji Tsuboi

AbstractIn this paper we give a relation between the Futaki invariant for a compact complex manifold $M$ and the holonomy of a determinant line bundle over a loop in the base space of any principal $G$-bundle, where $G$ is the identity component of the maximal compact subgroup of the complex Lie group consisting of all biholomorphic automorphisms of $M$. Using the property of the Futaki invariant, we show that the holonomy is an obstruction to the existence of the Einstein–Kähler metrics on $M$. Our main result is Theorem 2.1.AMS 2000 Mathematics subject classification: Primary 32Q20. Secondary 58J28; 58J52





Author(s):  
ELEONORA A. ROMANO ◽  
JAROSŁAW A. WIŚNIEWSKI

Abstract Let X be a complex projective manifold, L an ample line bundle on X, and assume that we have a ℂ* action on (X;L). We classify such triples (X; L;ℂ*) for which the closure of a general orbit of the ℂ* action is of degree ≤ 3 with respect to L and, in addition, the source and the sink of the action are isolated fixed points, and the ℂ* action on the normal bundle of every fixed point component has weights ±1. We treat this situation by relating it to the classical adjunction theory. As an application, we prove that contact Fano manifolds of dimension 11 and 13 are homogeneous if their group of automorphisms is reductive of rank ≥ 2.



Sign in / Sign up

Export Citation Format

Share Document