Pólya S3-extensions of ℚ

2018 ◽  
Vol 149 (6) ◽  
pp. 1421-1433 ◽  
Author(s):  
Abbas Maarefparvar ◽  
Ali Rajaei

AbstractA number field K with a ring of integers 𝒪K is called a Pólya field, if the 𝒪K-module of integer-valued polynomials on 𝒪K has a regular basis, or equivalently all its Bhargava factorial ideals are principal [1]. We generalize Leriche's criterion [8] for Pólya-ness of Galois closures of pure cubic fields, to general S3-extensions of ℚ. Also, we prove for a real (resp. imaginary) Pólya S3-extension L of ℚ, at most four (resp. three) primes can be ramified. Moreover, depending on the solvability of unit norm equation over the quadratic subfield of L, we determine when these sharp upper bounds can occur.

1999 ◽  
Vol 42 (1) ◽  
pp. 127-141
Author(s):  
Dimitrios Poulakis

Let K be an algebraic number field with ring of integers OK and f(X) ∈ OK[X]. In this paper we establish improved explicit upper bounds for the size of solutions in OK, of diophantine equations Y2 = f(X), where f(X) has at least three roots of odd order, and Ym = f(X), where m is an integer ≥ 3 and f(X) has at least two roots of order prime to m.


2019 ◽  
Vol 15 (10) ◽  
pp. 1983-2025
Author(s):  
Daniel C. Mayer

Barrucand and Cohn’s theory of principal factorizations in pure cubic fields [Formula: see text] and their Galois closures [Formula: see text] with [Formula: see text] types is generalized to pure quintic fields [Formula: see text] and pure metacyclic fields [Formula: see text] with [Formula: see text] possible types. The classification is based on the Galois cohomology of the unit group [Formula: see text], viewed as a module over the automorphism group [Formula: see text] of [Formula: see text] over the cyclotomic field [Formula: see text], by making use of theorems by Hasse and Iwasawa on the Herbrand quotient of the unit norm index [Formula: see text] by the number [Formula: see text] of primitive ambiguous principal ideals, which can be interpreted as principal factors of the different [Formula: see text]. The precise structure of the group of differential principal factors is determined with the aid of kernels of norm homomorphisms and central orthogonal idempotents. A connection with integral representation theory is established via class number relations by Parry and Walter involving the index of subfield units [Formula: see text]. Generalizing criteria for the Pólya property of Galois closures [Formula: see text] of pure cubic fields [Formula: see text] by Leriche and Zantema, we prove that pure metacyclic fields [Formula: see text] of only one type cannot be Pólya fields. All theoretical results are underpinned by extensive numerical verifications of the [Formula: see text] possible types and their statistical distribution in the range [Formula: see text] of [Formula: see text] normalized radicands.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


2018 ◽  
Vol 14 (09) ◽  
pp. 2333-2342 ◽  
Author(s):  
Henry H. Kim ◽  
Zack Wolske

In this paper, we consider number fields containing quadratic subfields with minimal index that is large relative to the discriminant of the number field. We give new upper bounds on the minimal index, and construct families with the largest possible minimal index.


2014 ◽  
Vol 10 (04) ◽  
pp. 885-903 ◽  
Author(s):  
Paul Pollack

Let 𝕏 be a finite group of primitive Dirichlet characters. Let ξ = ∑χ∈𝕏 aχ χ be a nonzero element of the group ring ℤ[𝕏]. We investigate the smallest prime q that is coprime to the conductor of each χ ∈ 𝕏 and that satisfies ∑χ∈𝕏 aχ χ(q) ≠ 0. Our main result is a nontrivial upper bound on q valid for certain special forms ξ. From this, we deduce upper bounds on the smallest unramified prime with a given splitting type in an abelian number field. For example, let K/ℚ be an abelian number field of degree n and conductor f. Let g be a proper divisor of n. If there is any unramified rational prime q that splits into g distinct prime ideals in ØK, then the least such q satisfies [Formula: see text].


2019 ◽  
Vol 69 (6) ◽  
pp. 1263-1278
Author(s):  
Zrinka Franušić ◽  
Borka Jadrijević

Abstract Let 𝓞𝕂 be the ring of integers of the number field 𝕂 = $\begin{array}{} \displaystyle \mathbb{Q}(\sqrt{2},\sqrt{3}) \end{array}$. A D(n)-quadruple in the ring 𝓞𝕂 is a set of four distinct non-zero elements {z1, z2, z3, z4} ⊂ 𝓞𝕂 with the property that the product of each two distinct elements increased by n is a perfect square in 𝓞𝕂. We show that the set of all n ∈ 𝓞𝕂 such that a D(n)-quadruple in 𝓞𝕂 exists coincides with the set of all integers in 𝕂 that can be represented as a difference of two squares of integers in 𝕂.


1988 ◽  
Vol 111 ◽  
pp. 165-171 ◽  
Author(s):  
Yoshimasa Miyata

Let k be an algebraic number field with the ring of integers ok = o and let G be a cyclic group of order p, an odd prime.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050080
Author(s):  
Robson R. Araujo ◽  
Ana C. M. M. Chagas ◽  
Antonio A. Andrade ◽  
Trajano P. Nóbrega Neto

In this work, we computate the trace form [Formula: see text] associated to a cyclic number field [Formula: see text] of odd prime degree [Formula: see text], where [Formula: see text] ramified in [Formula: see text] and [Formula: see text] belongs to the ring of integers of [Formula: see text]. Furthermore, we use this trace form to calculate the expression of the center density of algebraic lattices constructed via the Minkowski embedding from some ideals in the ring of integers of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document