Prime splitting in abelian number fields and linear combinations of Dirichlet characters

2014 ◽  
Vol 10 (04) ◽  
pp. 885-903 ◽  
Author(s):  
Paul Pollack

Let 𝕏 be a finite group of primitive Dirichlet characters. Let ξ = ∑χ∈𝕏 aχ χ be a nonzero element of the group ring ℤ[𝕏]. We investigate the smallest prime q that is coprime to the conductor of each χ ∈ 𝕏 and that satisfies ∑χ∈𝕏 aχ χ(q) ≠ 0. Our main result is a nontrivial upper bound on q valid for certain special forms ξ. From this, we deduce upper bounds on the smallest unramified prime with a given splitting type in an abelian number field. For example, let K/ℚ be an abelian number field of degree n and conductor f. Let g be a proper divisor of n. If there is any unramified rational prime q that splits into g distinct prime ideals in ØK, then the least such q satisfies [Formula: see text].

2018 ◽  
Vol 14 (09) ◽  
pp. 2333-2342 ◽  
Author(s):  
Henry H. Kim ◽  
Zack Wolske

In this paper, we consider number fields containing quadratic subfields with minimal index that is large relative to the discriminant of the number field. We give new upper bounds on the minimal index, and construct families with the largest possible minimal index.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Stephanie Chan ◽  
Christine McMeekin ◽  
Djordjo Milovic

AbstractLet K be a cyclic number field of odd degree over $${\mathbb {Q}}$$ Q with odd narrow class number, such that 2 is inert in $$K/{\mathbb {Q}}$$ K / Q . We define a family of number fields $$\{K(p)\}_p$$ { K ( p ) } p , depending on K and indexed by the rational primes p that split completely in $$K/{\mathbb {Q}}$$ K / Q , in which p is always ramified of degree 2. Conditional on a standard conjecture on short character sums, the density of such rational primes p that exhibit one of two possible ramified factorizations in $$K(p)/{\mathbb {Q}}$$ K ( p ) / Q is strictly between 0 and 1 and is given explicitly as a formula in terms of the degree of the extension $$K/{\mathbb {Q}}$$ K / Q . Our results are unconditional in the cubic case. Our proof relies on a detailed study of the joint distribution of spins of prime ideals.


1987 ◽  
Vol 107 ◽  
pp. 135-146 ◽  
Author(s):  
Yoshitaka Odai

Let I be an odd prime number and let K be an algebraic number field of degree I. Let M denote the genus field of K, i.e., the maximal extension of K which is a composite of an absolute abelian number field with K and is unramified at all the finite primes of K. In [4] Ishida has explicitly constructed M. Therefore it is of some interest to investigate unramified cyclic extensions of K of degree l, which are not contained in M. In the preceding paper [6] we have obtained some results about this problem in the case that K is a pure cubic field. The purpose of this paper is to extend those results.


2018 ◽  
Vol 30 (3) ◽  
pp. 767-773 ◽  
Author(s):  
Wataru Takeda ◽  
Shin-ya Koyama

AbstractWe estimate the number of relatively r-prime lattice points in {K^{m}} with their components having a norm less than x, where K is a number field. The error terms are estimated in terms of x and the discriminant D of the field K, as both x and D grow. The proof uses the bounds of Dedekind zeta functions. We obtain uniform upper bounds as K runs through number fields of any degree under assuming the Lindelöf hypothesis. We also show unconditional results for abelian extensions with a degree less than or equal to 6.


2006 ◽  
Vol 05 (01) ◽  
pp. 35-41 ◽  
Author(s):  
J. CARMELO INTERLANDO ◽  
JOSÉ OTHON DANTAS LOPES ◽  
TRAJANO PIRES DA NÓBREGA NETO

A formula for computing the discriminant of any Abelian number field K is given. It is presented as a function of the conductor m of K and of the degrees of the fields K ∩ ℚ(ζpα) over ℚ, where p runs through the set of primes that divide m, and pα is the greatest power of p that divides m.


1960 ◽  
Vol 17 ◽  
pp. 171-179 ◽  
Author(s):  
Taira Honda

Notations. The following notations will be used throughout this paper.˛: the identity of a finite group.Q: the rational number field.P: an algebraic number field of finite degree, fixed as the ground field.l: a prime number.ζl: a primitive l-th root of unity.


2018 ◽  
Vol 25 (03) ◽  
pp. 437-458
Author(s):  
Hao Wen ◽  
Chunhui Liu

We fix a counting function of multiplicities of algebraic points in a projective hypersurface over a number field, and take the sum over all algebraic points of bounded height and fixed degree. An upper bound for the sum with respect to this counting function will be given in terms of the degree of the hypersurface, the dimension of the singular locus, the upper bounds of height, and the degree of the field of definition.


2021 ◽  
Vol 9 ◽  
Author(s):  
David Burns ◽  
Rob de Jeu ◽  
Herbert Gangl ◽  
Alexander D. Rahm ◽  
Dan Yasaki

Abstract We develop methods for constructing explicit generators, modulo torsion, of the $K_3$ -groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$ -space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$ -group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields.


Author(s):  
Mattias Jonsson ◽  
Paul Reschke

AbstractWe show that any birational selfmap of a complex projective surface that has dynamical degree greater than one and is defined over a number field automatically satisfies the Bedford–Diller energy condition after a suitable birational conjugacy. As a consequence, the complex dynamics of the map is well behaved. We also show that there is a well-defined canonical height function.


Sign in / Sign up

Export Citation Format

Share Document