Number fields with large minimal index containing quadratic subfields

2018 ◽  
Vol 14 (09) ◽  
pp. 2333-2342 ◽  
Author(s):  
Henry H. Kim ◽  
Zack Wolske

In this paper, we consider number fields containing quadratic subfields with minimal index that is large relative to the discriminant of the number field. We give new upper bounds on the minimal index, and construct families with the largest possible minimal index.

2014 ◽  
Vol 10 (04) ◽  
pp. 885-903 ◽  
Author(s):  
Paul Pollack

Let 𝕏 be a finite group of primitive Dirichlet characters. Let ξ = ∑χ∈𝕏 aχ χ be a nonzero element of the group ring ℤ[𝕏]. We investigate the smallest prime q that is coprime to the conductor of each χ ∈ 𝕏 and that satisfies ∑χ∈𝕏 aχ χ(q) ≠ 0. Our main result is a nontrivial upper bound on q valid for certain special forms ξ. From this, we deduce upper bounds on the smallest unramified prime with a given splitting type in an abelian number field. For example, let K/ℚ be an abelian number field of degree n and conductor f. Let g be a proper divisor of n. If there is any unramified rational prime q that splits into g distinct prime ideals in ØK, then the least such q satisfies [Formula: see text].


2018 ◽  
Vol 30 (3) ◽  
pp. 767-773 ◽  
Author(s):  
Wataru Takeda ◽  
Shin-ya Koyama

AbstractWe estimate the number of relatively r-prime lattice points in {K^{m}} with their components having a norm less than x, where K is a number field. The error terms are estimated in terms of x and the discriminant D of the field K, as both x and D grow. The proof uses the bounds of Dedekind zeta functions. We obtain uniform upper bounds as K runs through number fields of any degree under assuming the Lindelöf hypothesis. We also show unconditional results for abelian extensions with a degree less than or equal to 6.


2018 ◽  
Vol 25 (03) ◽  
pp. 437-458
Author(s):  
Hao Wen ◽  
Chunhui Liu

We fix a counting function of multiplicities of algebraic points in a projective hypersurface over a number field, and take the sum over all algebraic points of bounded height and fixed degree. An upper bound for the sum with respect to this counting function will be given in terms of the degree of the hypersurface, the dimension of the singular locus, the upper bounds of height, and the degree of the field of definition.


2021 ◽  
Vol 9 ◽  
Author(s):  
David Burns ◽  
Rob de Jeu ◽  
Herbert Gangl ◽  
Alexander D. Rahm ◽  
Dan Yasaki

Abstract We develop methods for constructing explicit generators, modulo torsion, of the $K_3$ -groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$ -space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$ -group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields.


Author(s):  
Mattias Jonsson ◽  
Paul Reschke

AbstractWe show that any birational selfmap of a complex projective surface that has dynamical degree greater than one and is defined over a number field automatically satisfies the Bedford–Diller energy condition after a suitable birational conjugacy. As a consequence, the complex dynamics of the map is well behaved. We also show that there is a well-defined canonical height function.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Stephanie Chan ◽  
Christine McMeekin ◽  
Djordjo Milovic

AbstractLet K be a cyclic number field of odd degree over $${\mathbb {Q}}$$ Q with odd narrow class number, such that 2 is inert in $$K/{\mathbb {Q}}$$ K / Q . We define a family of number fields $$\{K(p)\}_p$$ { K ( p ) } p , depending on K and indexed by the rational primes p that split completely in $$K/{\mathbb {Q}}$$ K / Q , in which p is always ramified of degree 2. Conditional on a standard conjecture on short character sums, the density of such rational primes p that exhibit one of two possible ramified factorizations in $$K(p)/{\mathbb {Q}}$$ K ( p ) / Q is strictly between 0 and 1 and is given explicitly as a formula in terms of the degree of the extension $$K/{\mathbb {Q}}$$ K / Q . Our results are unconditional in the cubic case. Our proof relies on a detailed study of the joint distribution of spins of prime ideals.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250087 ◽  
Author(s):  
ANDREAS PHILIPP

Let R be an order in an algebraic number field. If R is a principal order, then many explicit results on its arithmetic are available. Among others, R is half-factorial if and only if the class group of R has at most two elements. Much less is known for non-principal orders. Using a new semigroup theoretical approach, we study half-factoriality and further arithmetical properties for non-principal orders in algebraic number fields.


2019 ◽  
Vol 15 (08) ◽  
pp. 1617-1633 ◽  
Author(s):  
Antonella Perucca ◽  
Pietro Sgobba

For all number fields the failure of maximality for the Kummer extensions is bounded in a very strong sense. We give a direct proof (without relying on the Bashmakov–Ribet method) of the fact that if [Formula: see text] is a finitely generated and torsion-free multiplicative subgroup of a number field [Formula: see text] having rank [Formula: see text], then the ratio between [Formula: see text] and the Kummer degree [Formula: see text] is bounded independently of [Formula: see text]. We then apply this result to generalize to higher rank a theorem of Ziegler from 2006 about the multiplicative order of the reductions of algebraic integers (the multiplicative order must be in a given arithmetic progression, and an additional Frobenius condition may be considered).


Author(s):  
Peter Koymans ◽  
Carlo Pagano

Abstract In $1801$, Gauss found an explicit description, in the language of binary quadratic forms, for the $2$-torsion of the narrow class group and dual narrow class group of a quadratic number field. This is now known as Gauss’s genus theory. In this paper, we extend Gauss’s work to the setting of multi-quadratic number fields. To this end, we introduce and parametrize the categories of expansion groups and expansion Lie algebras, giving an explicit description for the universal objects of these categories. This description is inspired by the ideas of Smith [ 16] in his recent breakthrough on Goldfeld’s conjecture and the Cohen–Lenstra conjectures. Our main result shows that the maximal unramified multi-quadratic extension $L$ of a multi-quadratic number field $K$ can be reconstructed from the set of generalized governing expansions supported in the set of primes that ramify in $K$. This provides a recursive description for the group $\textrm{Gal}(L/\mathbb{Q})$ and a systematic procedure to construct the field $L$. A special case of our main result gives an upper bound for the size of $\textrm{Cl}^{+}(K)[2]$.


Sign in / Sign up

Export Citation Format

Share Document