Bilinear forms on potential spaces in the unit circle

2019 ◽  
Vol 150 (4) ◽  
pp. 2117-2154
Author(s):  
Carme Cascante ◽  
Joaquín M. Ortega

AbstractIn this paper we characterize the boundedness on the product of Sobolev spaces Hs(𝕋) × Hs(𝕋) on the unit circle 𝕋, of the bilinear form Λb with symbol b ∈ Hs(𝕋) given by $${{\Lambda}_b} (\varphi, \psi): = \int_{\open T} {\left( {{{( - {\Delta })}^s} + I} \right)(\varphi \psi )(\eta )b(\eta ) {\rm d}\sigma (\eta ).}$$

2020 ◽  
Vol 32 (4) ◽  
pp. 995-1026
Author(s):  
Carme Cascante ◽  
Joaquín M. Ortega

AbstractIn this paper, we show that if {b\in L^{2}(\mathbb{R}^{n})}, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces {H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})}, {0<s<1}, by(f,g)\in H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})\to\int_{% \mathbb{R}^{n}}(\mathrm{Id}-\Delta)^{\frac{s}{2}}(fg)(\mathbf{x})b(\mathbf{x})% \mathop{}\!d\mathbf{x}is continuous if and only if the positive measure {\lvert b(\mathbf{x})\rvert^{2}\mathop{}\!d\mathbf{x}} is a trace measure for {H_{s}^{2}(\mathbb{R}^{n})}.


1959 ◽  
Vol 4 (2) ◽  
pp. 62-72 ◽  
Author(s):  
Hans Zassenhaus

To what extent is the structure of a Lie-algebra L over a field F determined by the bilinear formon L that is derived from a matrix representationof L with finite degree d(Δ) by forming the trace of the matrix productsSuch a bilinear form is a function with two arguments in L, values in F and the properties:


2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Beata Rothkegel

AbstractIn the paper we formulate a criterion for the nonsingularity of a bilinear form on a direct sum of finitely many invertible ideals of a domain. We classify these forms up to isometry and, in the case of a Dedekind domain, up to similarity.


1995 ◽  
Vol 117 (2) ◽  
pp. 333-338 ◽  
Author(s):  
Raffaele Chiappinelli

Let ρ,ρ0,ρ1 be positive, measurable functions on ℝN. For 1 ≤ t < ∞, consider the weighted Lebesgue and Sobolev spaces


Author(s):  
C. N. Linden ◽  
M. L. Cartwright

Letbe a function regular for | z | < 1. With the hypotheses f(0) = 0 andfor some positive constant α, Cartwright(1) has deduced upper bounds for |f(z) | in the unit circle. Three cases have arisen and according as (1) holds with α < 1, α = 1 or α > 1, the bounds on each circle | z | = r are given respectively byK(α) being a constant which depends only on the corresponding value of α which occurs in (1). We shall always use the symbols K and A to represent constants dependent on certain parameters such as α, not necessarily having the same value at each occurrence.


Author(s):  
Vesa Mustonen ◽  
Matti Tienari

Let m: [ 0, ∞) → [ 0, ∞) be an increasing continuous function with m(t) = 0 if and only if t = 0, m(t) → ∞ as t → ∞ and Ω C ℝN a bounded domain. In this note we show that for every r > 0 there exists a function ur solving the minimization problemwhere Moreover, the function ur is a weak solution to the corresponding Euler–Lagrange equationfor some λ > 0. We emphasize that no Δ2-condition is needed for M or M; so the associated functionals are not continuously differentiable, in general.


1962 ◽  
Vol 14 ◽  
pp. 553-564 ◽  
Author(s):  
Richard Block

If L is a Lie algebra with a representation Δ a→aΔ (a in L) (of finite degree), then by the trace form f = fΔ of Δ is meant the symmetric bilinear form on L obtained by taking the trace of the matrix products:Then f is invariant, that is, f is symmetric and f(ab, c) — f(a, bc) for all a, b, c in L. By the Δ-radical L⊥ = L⊥ of L is meant the set of a in L such that f(a, b) = 0 for all b in L. Then L⊥ is an ideal and f induces a bilinear form , called a quotient trace form, on L/L⊥. Thus an algebra has a quotient trace form if and only if there exists a Lie algebra L with a representation Δ such that


2018 ◽  
Vol 457 (1) ◽  
pp. 722-750
Author(s):  
Carme Cascante ◽  
Joan Fàbrega ◽  
Joaquín M. Ortega

1962 ◽  
Vol 14 ◽  
pp. 540-551 ◽  
Author(s):  
W. C. Royster

Let Σ represent the class of analytic functions(1)which are regular, except for a simple pole at infinity, and univalent in |z| > 1 and map |z| > 1 onto a domain whose complement is starlike with respect to the origin. Further let Σ- 1 be the class of inverse functions of Σ which at w = ∞ have the expansion(2).In this paper we develop variational formulas for functions of the classes Σ and Σ- 1 and obtain certain properties of functions that extremalize some rather general functionals pertaining to these classes. In particular, we obtain precise upper bounds for |b2| and |b3|. Precise upper bounds for |b1|, |b2| and |b3| are given by Springer (8) for the general univalent case, provided b0 =0.


1980 ◽  
Vol 32 (5) ◽  
pp. 1045-1057 ◽  
Author(s):  
Patrick J. Browne ◽  
Rodney Nillsen

Throughout this paper we shall use I to denote a given interval, not necessarily bounded, of real numbers and Cn to denote the real valued n times continuously differentiable functions on I and C0 will be abbreviated to C. By a differential operator of order n we shall mean a linear function L:Cn → C of the form1.1where pn(x) ≠ 0 for x ∊ I and pi ∊ Cj 0 ≦ j ≦ n. The function pn is called the leading coefficient of L.It is well known (see, for example, [2, pp. 73-74]) thai a differential operator L of order n uniquely determines both a differential operator L* of order n (the adjoint of L) and a bilinear form [·,·]L (the Lagrange bracket) so that if D denotes differentiation, we have for u, v ∊ Cn,1.2


Sign in / Sign up

Export Citation Format

Share Document