scholarly journals Stability of the exit time for Lévy processes

2011 ◽  
Vol 43 (03) ◽  
pp. 712-734
Author(s):  
Philip S. Griffin ◽  
Ross A. Maller

This paper is concerned with the behaviour of a Lévy process when it crosses over a positive level, u, starting from 0, both as u becomes large and as u becomes small. Our main focus is on the time, τ u , it takes the process to transit above the level, and in particular, on the stability of this passage time; thus, essentially, whether or not τ u behaves linearly as u ↓ 0 or u → ∞. We also consider the conditional stability of τ u when the process drifts to -∞ almost surely. This provides information relevant to quantities associated with the ruin of an insurance risk process, which we analyse under a Cramér condition.

2011 ◽  
Vol 43 (3) ◽  
pp. 712-734 ◽  
Author(s):  
Philip S. Griffin ◽  
Ross A. Maller

This paper is concerned with the behaviour of a Lévy process when it crosses over a positive level, u, starting from 0, both as u becomes large and as u becomes small. Our main focus is on the time, τu, it takes the process to transit above the level, and in particular, on the stability of this passage time; thus, essentially, whether or not τu behaves linearly as u ↓ 0 or u → ∞. We also consider the conditional stability of τu when the process drifts to -∞ almost surely. This provides information relevant to quantities associated with the ruin of an insurance risk process, which we analyse under a Cramér condition.


2006 ◽  
Vol 43 (04) ◽  
pp. 967-983 ◽  
Author(s):  
M. E. Caballero ◽  
L. Chaumont

By variously killing a stable Lévy process when it leaves the positive half-line, conditioning it to stay positive, and conditioning it to hit 0 continuously, we obtain three different, positive, self-similar Markov processes which illustrate the three classes described by Lamperti (1972). For each of these processes, we explicitly compute the infinitesimal generator and from this deduce the characteristics of the underlying Lévy process in the Lamperti representation. The proof of this result bears on the behaviour at time 0 of stable Lévy processes before their first passage time across level 0, which we describe here. As an application, for a certain class of Lévy processes we give the law of the minimum before an independent exponential time. This provides the explicit form of the spatial Wiener-Hopf factor at a particular point and the value of the ruin probability for this class of Lévy processes.


2006 ◽  
Vol 43 (4) ◽  
pp. 967-983 ◽  
Author(s):  
M. E. Caballero ◽  
L. Chaumont

By variously killing a stable Lévy process when it leaves the positive half-line, conditioning it to stay positive, and conditioning it to hit 0 continuously, we obtain three different, positive, self-similar Markov processes which illustrate the three classes described by Lamperti (1972). For each of these processes, we explicitly compute the infinitesimal generator and from this deduce the characteristics of the underlying Lévy process in the Lamperti representation. The proof of this result bears on the behaviour at time 0 of stable Lévy processes before their first passage time across level 0, which we describe here. As an application, for a certain class of Lévy processes we give the law of the minimum before an independent exponential time. This provides the explicit form of the spatial Wiener-Hopf factor at a particular point and the value of the ruin probability for this class of Lévy processes.


2009 ◽  
Vol 46 (02) ◽  
pp. 542-558 ◽  
Author(s):  
E. J. Baurdoux

Chiu and Yin (2005) found the Laplace transform of the last time a spectrally negative Lévy process, which drifts to ∞, is below some level. The main motivation for the study of this random time stems from risk theory: what is the last time the risk process, modeled by a spectrally negative Lévy process drifting to ∞, is 0? In this paper we extend the result of Chiu and Yin, and we derive the Laplace transform of the last time, before an independent, exponentially distributed time, that a spectrally negative Lévy process (without any further conditions) exceeds (upwards or downwards) or hits a certain level. As an application, we extend a result found in Doney (1991).


2016 ◽  
Vol 53 (2) ◽  
pp. 572-584 ◽  
Author(s):  
Erik J. Baurdoux ◽  
Juan Carlos Pardo ◽  
José Luis Pérez ◽  
Jean-François Renaud

Abstract Inspired by the works of Landriault et al. (2011), (2014), we study the Gerber–Shiu distribution at Parisian ruin with exponential implementation delays for a spectrally negative Lévy insurance risk process. To be more specific, we study the so-called Gerber–Shiu distribution for a ruin model where at each time the surplus process goes negative, an independent exponential clock is started. If the clock rings before the surplus becomes positive again then the insurance company is ruined. Our methodology uses excursion theory for spectrally negative Lévy processes and relies on the theory of so-called scale functions. In particular, we extend the recent results of Landriault et al. (2011), (2014).


1993 ◽  
Vol 132 ◽  
pp. 141-153 ◽  
Author(s):  
Toshiro Watanabe

In this paper it is shown that there is a unimodal Levy process with oscillating mode. After the author first constructed an example of such a self-decomposable process, Sato pointed out that it belongs to the class of semi-stable processes with β < 0. We prove that all non-symmetric semi-stable self-decomposable processes with β < 0 have oscillating modes.


2006 ◽  
Vol 38 (03) ◽  
pp. 768-791 ◽  
Author(s):  
A. B. Dieker

We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes. First, we find the joint distribution of the supremum and the epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. Second, we establish general properties of perturbed risk models, and obtain explicit fluctuation identities in the case that the Lévy process is spectrally positive. Third, we study the tail asymptotics for the supremum of a Lévy process under different assumptions on the tail of the Lévy measure.


2015 ◽  
Vol 47 (01) ◽  
pp. 128-145 ◽  
Author(s):  
Kamille Sofie Tågholt Gad ◽  
Jesper Lund Pedersen

The main result of this paper is the solution to the optimal stopping problem of maximizing the variance of a geometric Lévy process. We call this problem the variance problem. We show that, for some geometric Lévy processes, we achieve higher variances by allowing randomized stopping. Furthermore, for some geometric Lévy processes, the problem has a solution only if randomized stopping is allowed. When randomized stopping is allowed, we give a solution to the variance problem. We identify the Lévy processes for which the allowance of randomized stopping times increases the maximum variance. When it does, we also solve the variance problem without randomized stopping.


2015 ◽  
Vol 52 (03) ◽  
pp. 665-687
Author(s):  
Esther Frostig

Consider a spectrally negative risk process where, on ruin, the deficit is immediately paid, and the process restarts from 0. When the process reaches a threshold b, all the surplus above b is paid as dividend. Applying the theory of exit times for a spectrally negative Lévy process and its reflection at the maximum and at the minimum, we obtain recursive formulae for the following moments. (i) The moments of the discounted loss until the process reaches b. This is equivalent to the moments of the discounted dividends in the dual model under the barrier strategy. (ii) The moments of the discounted loss for models with and without a dividend barrier for the infinite horizon. (iii) The moments of the discounted dividends for the infinite horizon.


Sign in / Sign up

Export Citation Format

Share Document