scholarly journals Gerber–Shiu distribution at Parisian ruin for Lévy insurance risk processes

2016 ◽  
Vol 53 (2) ◽  
pp. 572-584 ◽  
Author(s):  
Erik J. Baurdoux ◽  
Juan Carlos Pardo ◽  
José Luis Pérez ◽  
Jean-François Renaud

Abstract Inspired by the works of Landriault et al. (2011), (2014), we study the Gerber–Shiu distribution at Parisian ruin with exponential implementation delays for a spectrally negative Lévy insurance risk process. To be more specific, we study the so-called Gerber–Shiu distribution for a ruin model where at each time the surplus process goes negative, an independent exponential clock is started. If the clock rings before the surplus becomes positive again then the insurance company is ruined. Our methodology uses excursion theory for spectrally negative Lévy processes and relies on the theory of so-called scale functions. In particular, we extend the recent results of Landriault et al. (2011), (2014).

2001 ◽  
Vol 33 (1) ◽  
pp. 281-291 ◽  
Author(s):  
Hailiang Yang ◽  
Lianzeng Zhang

In this paper, results on spectrally negative Lévy processes are used to study the ruin probability under some risk processes. These processes include the compound Poisson process and the gamma process, both perturbed by diffusion. In addition, the first time the risk process hits a given level is also studied. In the case of classical risk process, the joint distribution of the ruin time and the first recovery time is obtained. Some results in this paper have appeared before (e.g., Dufresne and Gerber (1991), Gerber (1990), dos Reis (1993)). We revisit them from the Lévy process theory's point of view and in a unified and simple way.


2017 ◽  
Vol 54 (1) ◽  
pp. 267-285 ◽  
Author(s):  
Onno J. Boxma ◽  
Esther Frostig ◽  
David Perry

AbstractWe consider a Cramér–Lundberg insurance risk process with the added feature of reinsurance. If an arriving claim finds the reserve below a certain threshold γ, or if it would bring the reserve below that level, then a reinsurer pays part of the claim. Using fluctuation theory and the theory of scale functions of spectrally negative Lévy processes, we derive expressions for the Laplace transform of the time to ruin and of the joint distribution of the deficit at ruin and the surplus before ruin. We specify these results in much more detail for the threshold set-up in the case of proportional reinsurance.


2014 ◽  
Vol 51 (4) ◽  
pp. 1171-1188 ◽  
Author(s):  
Jean-François Renaud

In this paper we introduce an insurance ruin model with an adaptive premium rate, henceforth referred to as restructuring/refraction, in which classical ruin and bankruptcy are distinguished. In this model the premium rate is increased as soon as the wealth process falls into the red zone and is brought back to its regular level when the wealth process recovers. The analysis is focused mainly on the time a refracted Lévy risk process spends in the red zone (analogous to the duration of the negative surplus). Building on results from [11] and [16], we identify the distribution of various functionals related to occupation times of refracted spectrally negative Lévy processes. For example, these results are used to compute both the probability of bankruptcy and the probability of Parisian ruin in this model with restructuring.


2011 ◽  
Vol 48 (4) ◽  
pp. 984-1002 ◽  
Author(s):  
Irmina Czarna ◽  
Zbigniew Palmowski

In this paper we analyze the so-called Parisian ruin probability, which arises when the surplus process stays below 0 longer than a fixed amount of time ζ > 0. We focus on a general spectrally negative Lévy insurance risk process. For this class of processes, we derive an expression for the ruin probability in terms of quantities that can be calculated explicitly in many models. We find its Cramér-type and convolution-equivalent asymptotics when reserves tend to ∞. Finally, we analyze some explicit examples.


2011 ◽  
Vol 48 (04) ◽  
pp. 984-1002 ◽  
Author(s):  
Irmina Czarna ◽  
Zbigniew Palmowski

In this paper we analyze the so-called Parisian ruin probability, which arises when the surplus process stays below 0 longer than a fixed amount of time ζ > 0. We focus on a general spectrally negative Lévy insurance risk process. For this class of processes, we derive an expression for the ruin probability in terms of quantities that can be calculated explicitly in many models. We find its Cramér-type and convolution-equivalent asymptotics when reserves tend to ∞. Finally, we analyze some explicit examples.


2020 ◽  
Vol 52 (4) ◽  
pp. 1164-1196
Author(s):  
Wenyuan Wang ◽  
Xiaowen Zhou

AbstractDraw-down time for a stochastic process is the first passage time of a draw-down level that depends on the previous maximum of the process. In this paper we study the draw-down-related Parisian ruin problem for spectrally negative Lévy risk processes. Intuitively, a draw-down Parisian ruin occurs when the surplus process has continuously stayed below the dynamic draw-down level for a fixed amount of time. We introduce the draw-down Parisian ruin time and solve the corresponding two-sided exit problems via excursion theory. We also find an expression for the potential measure for the process killed at the draw-down Parisian time. As applications, we obtain new results for spectrally negative Lévy risk processes with dividend barrier and with Parisian ruin.


2014 ◽  
Vol 51 (04) ◽  
pp. 1171-1188 ◽  
Author(s):  
Jean-François Renaud

In this paper we introduce an insurance ruin model with an adaptive premium rate, henceforth referred to as restructuring/refraction, in which classical ruin and bankruptcy are distinguished. In this model the premium rate is increased as soon as the wealth process falls into the red zone and is brought back to its regular level when the wealth process recovers. The analysis is focused mainly on the time a refracted Lévy risk process spends in the red zone (analogous to the duration of the negative surplus). Building on results from [11] and [16], we identify the distribution of various functionals related to occupation times of refracted spectrally negative Lévy processes. For example, these results are used to compute both the probability of bankruptcy and the probability of Parisian ruin in this model with restructuring.


Sign in / Sign up

Export Citation Format

Share Document