Limit theorems for the minimal position in a branching random walk with independent logconcave displacements

2000 ◽  
Vol 32 (01) ◽  
pp. 159-176 ◽  
Author(s):  
Markus Bachmann

Consider a branching random walk in which each particle has a random number (one or more) of offspring particles that are displaced independently of each other according to a logconcave density. Under mild additional assumptions, we obtain the following results: the minimal position in the nth generation, adjusted by its α-quantile, converges weakly to a non-degenerate limiting distribution. There also exists a ‘conditional limit’ of the adjusted minimal position, which has a (Gumbel) extreme value distribution delayed by a random time-lag. Consequently, the unconditional limiting distribution is a mixture of extreme value distributions.

2000 ◽  
Vol 32 (1) ◽  
pp. 159-176 ◽  
Author(s):  
Markus Bachmann

Consider a branching random walk in which each particle has a random number (one or more) of offspring particles that are displaced independently of each other according to a logconcave density. Under mild additional assumptions, we obtain the following results: the minimal position in the nth generation, adjusted by its α-quantile, converges weakly to a non-degenerate limiting distribution. There also exists a ‘conditional limit’ of the adjusted minimal position, which has a (Gumbel) extreme value distribution delayed by a random time-lag. Consequently, the unconditional limiting distribution is a mixture of extreme value distributions.


1978 ◽  
Vol 15 (03) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

LetXn1≦Xn2≦ ··· ≦Xnndenote the order statistics from a sample ofnindependent, identically distributed random variables, and suppose that the variablesXnn, Xn,n–1, ···, when suitably normalized, have a non-trivial limiting joint distributionξ1,ξ2, ···, asn → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn,n≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems forξnasn →∞.


1973 ◽  
Vol 10 (1) ◽  
pp. 39-53 ◽  
Author(s):  
A. G. Pakes

The present work considers a left-continuous random walk moving on the positive integers and having an absorbing state at the origin. Limit theorems are derived for the position of the walk at time n given: (a) absorption does not occur until after n, or (b) absorption does not occur until after m + n where m is very large, or (c) absorption occurs at m + n. A limit theorem is given for an R-positive recurrent Markov chain on the non-negative integers with an absorbing origin and subject to condition (c) above.


1973 ◽  
Vol 10 (01) ◽  
pp. 39-53 ◽  
Author(s):  
A. G. Pakes

The present work considers a left-continuous random walk moving on the positive integers and having an absorbing state at the origin. Limit theorems are derived for the position of the walk at time n given: (a) absorption does not occur until after n, or (b) absorption does not occur until after m + n where m is very large, or (c) absorption occurs at m + n. A limit theorem is given for an R-positive recurrent Markov chain on the non-negative integers with an absorbing origin and subject to condition (c) above.


1978 ◽  
Vol 15 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Anthony G. Pakes

In a recent paper Green (1976) obtained some conditional limit theorems for the absorption time of left-continuous random walk. His methods require that in the driftless case the increment distribution has exponentially decreasing tails and that the same is true for a transformed distribution in the case of negative drift.Here we take a different approach which will produce Green's results under minimal conditions. Limit theorems are given for the maximum as the initial position of the random walk tends to infinity.


2009 ◽  
Vol 46 (1) ◽  
pp. 61-96
Author(s):  
Anna Pósfai ◽  
Sándor Csörgő

A collector samples with replacement a set of n ≧ 2 distinct coupons until he has n − m , 0 ≦ m < n , distinct coupons for the first time. We refine the limit theorems concerning the standardized random number of necessary draws if n → ∞ and m is fixed: we give a one-term asymptotic expansion of the distribution function in question, providing a better approximation of it, than the one given by the limiting distribution function, and proving in particular that the rate of convergence in these limiting theorems is of order (log n )/ n .


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Vladimir Vatutin ◽  
Andreas Kyprianou

International audience Let $Z_n,n=0,1,\ldots,$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s),\ldots,$ and let $S_0=0$, $S_k=X_1+ \ldots +X_k,k \geq 1$, be the associated random walk with $X_i=\log f_{i-1}^{\prime}(1), \tau (m,n)$ be the left-most point of minimum of $\{S_k,k \geq 0 \}$ on the interval $[m,n]$, and $T=\min \{ k:Z_k=0\}$. Assuming that the associated random walk satisfies the Doney condition $P(S_n > 0) \to \rho \in (0,1), n \to \infty$, we prove (under the quenched approach) conditional limit theorems, as $n \to \infty$, for the distribution of $Z_{nt}, Z_{\tau (0,nt)}$, and $Z_{\tau (nt,n)}, t \in (0,1)$, given $T=n$. It is shown that the form of the limit distributions essentially depends on the location of $\tau (0,n)$ with respect to the point $nt$.


Sign in / Sign up

Export Citation Format

Share Document