ARMA processes have maximal entropy among time series with prescribed autocovariances and impulse responses

1985 ◽  
Vol 17 (04) ◽  
pp. 810-840 ◽  
Author(s):  
Jürgen Franke

The maximum-entropy approach to the estimation of the spectral density of a time series has become quite popular during the last decade. It is closely related to the fact that an autoregressive process of order p has maximal entropy among all time series sharing the same autocovariances up to lag p. We give a natural generalization of this result by proving that a mixed autoregressive-moving-average process (ARMA process) of order (p, q) has maximal entropy among all time series sharing the same autocovariances up to lag p and the same impulse response coefficients up to lag q. The latter may be estimated from a finite record of the time series, for example by using a method proposed by Bhansali (1976). By the way, we give a result on the existence of ARMA processes with prescribed autocovariances up to lag p and impulse response coefficients up to lag q.

1985 ◽  
Vol 17 (4) ◽  
pp. 810-840 ◽  
Author(s):  
Jürgen Franke

The maximum-entropy approach to the estimation of the spectral density of a time series has become quite popular during the last decade. It is closely related to the fact that an autoregressive process of order p has maximal entropy among all time series sharing the same autocovariances up to lag p. We give a natural generalization of this result by proving that a mixed autoregressive-moving-average process (ARMA process) of order (p, q) has maximal entropy among all time series sharing the same autocovariances up to lag p and the same impulse response coefficients up to lag q. The latter may be estimated from a finite record of the time series, for example by using a method proposed by Bhansali (1976). By the way, we give a result on the existence of ARMA processes with prescribed autocovariances up to lag p and impulse response coefficients up to lag q.


2004 ◽  
Vol 41 (A) ◽  
pp. 375-382 ◽  
Author(s):  
Peter J. Brockwell

Using the kernel representation of a continuous-time Lévy-driven ARMA (autoregressive moving average) process, we extend the class of nonnegative Lévy-driven Ornstein–Uhlenbeck processes employed by Barndorff-Nielsen and Shephard (2001) to allow for nonmonotone autocovariance functions. We also consider a class of fractionally integrated Lévy-driven continuous-time ARMA processes obtained by a simple modification of the kernel of the continuous-time ARMA process. Asymptotic properties of the kernel and of the autocovariance function are derived.


2004 ◽  
Vol 41 (A) ◽  
pp. 375-382 ◽  
Author(s):  
Peter J. Brockwell

Using the kernel representation of a continuous-time Lévy-driven ARMA (autoregressive moving average) process, we extend the class of nonnegative Lévy-driven Ornstein–Uhlenbeck processes employed by Barndorff-Nielsen and Shephard (2001) to allow for nonmonotone autocovariance functions. We also consider a class of fractionally integrated Lévy-driven continuous-time ARMA processes obtained by a simple modification of the kernel of the continuous-time ARMA process. Asymptotic properties of the kernel and of the autocovariance function are derived.


2017 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Iberedem A. Iwok

In this work, the multivariate analogue to the univariate Wold’s theorem for a purely non-deterministic stable vector time series process was presented and justified using the method of undetermined coefficients. By this method, a finite vector autoregressive process of order  [] was represented as an infinite vector moving average () process which was found to be the same as the Wold’s representation. Thus, obtaining the properties of a  process is equivalent to obtaining the properties of an infinite  process. The proof of the unbiasedness of forecasts followed immediately based on the fact that a stable VAR process can be represented as an infinite VEMA process.


1974 ◽  
Vol 11 (01) ◽  
pp. 63-71 ◽  
Author(s):  
R. F. Galbraith ◽  
J. I. Galbraith

Expressions are obtained for the determinant and inverse of the covariance matrix of a set of n consecutive observations on a mixed autoregressive moving average process. Explicit formulae for the inverse of this matrix are given for the general autoregressive process of order p (n ≧ p), and for the first order mixed autoregressive moving average process.


2016 ◽  
Vol 25 (6) ◽  
pp. 669 ◽  
Author(s):  
Miguel Boubeta ◽  
María José Lombardía ◽  
Wenceslao González-Manteiga ◽  
Manuel Francisco Marey-Pérez

Wildfires are one of the main causes of forest destruction, especially in Galicia (north-west Spain), where the area burned by forest fires in spring and summer is quite high. This work uses two semiparametric time-series models to describe and predict the weekly burned area in a year: autoregressive moving average (ARMA) modelling after smoothing, and smoothing after ARMA modelling. These models can be described as a sum of a parametric component modelled by an autoregressive moving average process and a non-parametric one. To estimate the non-parametric component, local linear and kernel regression, B-splines and P-splines were considered. The methodology and software were applied to a real dataset of burned area in Galicia for the period 1999–2008. The burned area in Galicia increases strongly during summer periods. Forest managers are interested in predicting the burned area to manage resources more efficiently. The two semiparametric models are analysed and compared with a purely parametric model. In terms of error, the most successful results are provided by the first semiparametric time-series model.


1974 ◽  
Vol 11 (1) ◽  
pp. 63-71 ◽  
Author(s):  
R. F. Galbraith ◽  
J. I. Galbraith

Expressions are obtained for the determinant and inverse of the covariance matrix of a set of n consecutive observations on a mixed autoregressive moving average process. Explicit formulae for the inverse of this matrix are given for the general autoregressive process of order p (n ≧ p), and for the first order mixed autoregressive moving average process.


2012 ◽  
Vol 09 ◽  
pp. 232-239 ◽  
Author(s):  
TURAJ VAZIFEDAN ◽  
MAHENDRAN SHITAN

Time series data may consists of counts, such as the number of road accidents, the number of patients in a certain hospital, the number of customers waiting for service at a certain time and etc. When the value of the observations are large it is usual to use Gaussian Autoregressive Moving Average (ARMA) process to model the time series. However if the observed counts are small, it is not appropriate to use ARMA process to model the observed phenomenon. In such cases we need to model the time series data by using Non-Negative Integer valued Autoregressive (INAR) process. The modeling of counts data is based on the binomial thinning operator. In this paper we illustrate the modeling of counts data using the monthly number of Poliomyelitis data in United States between January 1970 until December 1983. We applied the AR(1), Poisson regression model and INAR(1) model and the suitability of these models were assessed by using the Index of Agreement(I.A.). We found that INAR(1) model is more appropriate in the sense it had a better I.A. and it is natural since the data are counts.


Sign in / Sign up

Export Citation Format

Share Document