Limit laws for maxima of a sequence of random variables defined on a Markov chain

1970 ◽  
Vol 2 (02) ◽  
pp. 323-343 ◽  
Author(s):  
Sidney I. Resnick ◽  
Marcel F. Neuts

Consider the bivariate sequence of r.v.'s {(J n , X n ), n ≧ 0} with X 0 = - ∞ a.s. The marginal sequence {J n } is an irreducible, aperiodic, m-state M.C., m < ∞, and the r.v.'s X n are conditionally independent given {J n }. Furthermore P{J n = j, X n ≦ x | J n − 1 = i} = p ij H i (x) = Q ij (x), where H 1(·), · · ·, H m (·) are c.d.f.'s. Setting M n = max {X 1, · · ·, X n }, we obtain P{J n = j, M n ≦ x | J 0 = i} = [Q n (x)] i, j , where Q(x) = {Q ij (x)}. The limiting behavior of this probability and the possible limit laws for M n are characterized. Theorem. Let ρ(x) be the Perron-Frobenius eigenvalue of Q(x) for real x; then: (a)ρ(x) is a c.d.f.; (b) if for a suitable normalization {Q ij n (a ijn x + b ijn )} converges completely to a matrix {U ij (x)} whose entries are non-degenerate distributions then U ij (x) = π j ρ U (x), where π j = lim n → ∞ p ij n and ρ U (x) is an extreme value distribution; (c) the normalizing constants need not depend on i, j; (d) ρ n (a n x + b n ) converges completely to ρ U (x); (e) the maximum M n has a non-trivial limit law ρ U (x) iff Q n (x) has a non-trivial limit matrix U(x) = {U ij (x)} = {π j ρ U (x)} or equivalently iff ρ(x) or the c.d.f. π i = 1 m H i π i(x) is in the domain of attraction of one of the extreme value distributions. Hence the only possible limit laws for {M n } are the extreme value distributions which generalize the results of Gnedenko for the i.i.d. case.

1970 ◽  
Vol 2 (2) ◽  
pp. 323-343 ◽  
Author(s):  
Sidney I. Resnick ◽  
Marcel F. Neuts

Consider the bivariate sequence of r.v.'s {(Jn, Xn), n ≧ 0} with X0 = - ∞ a.s. The marginal sequence {Jn} is an irreducible, aperiodic, m-state M.C., m < ∞, and the r.v.'s Xn are conditionally independent given {Jn}. Furthermore P{Jn = j, Xn ≦ x | Jn − 1 = i} = pijHi(x) = Qij(x), where H1(·), · · ·, Hm(·) are c.d.f.'s. Setting Mn = max {X1, · · ·, Xn}, we obtain P{Jn = j, Mn ≦ x | J0 = i} = [Qn(x)]i, j, where Q(x) = {Qij(x)}. The limiting behavior of this probability and the possible limit laws for Mn are characterized.Theorem. Let ρ(x) be the Perron-Frobenius eigenvalue of Q(x) for real x; then:(a)ρ(x) is a c.d.f.;(b) if for a suitable normalization {Qijn(aijnx + bijn)} converges completely to a matrix {Uij(x)} whose entries are non-degenerate distributions then Uij(x) = πjρU(x), where πj = limn → ∞pijn and ρU(x) is an extreme value distribution;(c) the normalizing constants need not depend on i, j;(d) ρn(anx + bn) converges completely to ρU(x);(e) the maximum Mn has a non-trivial limit law ρU(x) iff Qn(x) has a non-trivial limit matrix U(x) = {Uij(x)} = {πjρU(x)} or equivalently iff ρ(x) or the c.d.f. πi = 1mHiπi(x) is in the domain of attraction of one of the extreme value distributions. Hence the only possible limit laws for {Mn} are the extreme value distributions which generalize the results of Gnedenko for the i.i.d. case.


1971 ◽  
Vol 8 (01) ◽  
pp. 136-156 ◽  
Author(s):  
Sidney I. Resnick

If for two c.d.f.'s F(·) and G(·), 1 – F(x)/1 – G(x) → A, 0 &lt;A &lt;∞ , as x → ∞, then for normalizing constants an &gt; 0, bn, n &gt; 1, Fn (anx + bn ) → φ(x), φ(x) non-degenerate, iff Gn (anx + bn )→ φ A−1(x). Conversely, if Fn (anx+bn )→ φ(x), Gn (anx + bn ) → φ'(x), φ(x) and φ'(x) non-degenerate, then there exist constants C &gt;0 and D such that φ'(x) =φ(Cx + D) and limx→∞ 1 — F(x)/1 — G(x) exists and is expressed in terms of C and D, depending on which type of extreme value distribution φ(x) is. These results are used to study domain of attraction questions for products of distribution functions and to reduce the limit law problem for maxima of a sequence of random variables defined on a Markov chain (M.C.) to the independent, identically distributed (i.i.d.) case.


1971 ◽  
Vol 8 (1) ◽  
pp. 136-156 ◽  
Author(s):  
Sidney I. Resnick

If for two c.d.f.'s F(·) and G(·), 1 – F(x)/1 – G(x) → A, 0 <A <∞, as x → ∞, then for normalizing constants an > 0, bn, n > 1, Fn(anx + bn) → φ(x), φ(x) non-degenerate, iff Gn(anx + bn)→ φ A−1(x). Conversely, if Fn(anx+bn)→ φ(x), Gn(anx + bn) → φ'(x), φ(x) and φ'(x) non-degenerate, then there exist constants C >0 and D such that φ'(x) =φ(Cx + D) and limx→∞ 1 — F(x)/1 — G(x) exists and is expressed in terms of C and D, depending on which type of extreme value distribution φ(x) is. These results are used to study domain of attraction questions for products of distribution functions and to reduce the limit law problem for maxima of a sequence of random variables defined on a Markov chain (M.C.) to the independent, identically distributed (i.i.d.) case.


2017 ◽  
Author(s):  
Earl Bardsley

Abstract. Many environmental variables of interest as potential hazards take on only positive values, such a wind speed or river discharge. While recognising that primary interest is for largest extremes, it is desirable that distributions of maxima for design purposes should be subject to similar bounds as the physical variable concerned. A modified univariate extreme value argument defines a set of distributions, all bounded below at zero, with potential for application to annual maxima. Let f(x) be a probability distribution over the range, 0 ≤ x ≤ ω, where 0  0, c > 0 where ɛ = g(ω) and ɛ, ɑ, and c are respectively location, scale, and shape parameters. The distribution F(y) holds generally as an extreme value expression for sufficiently large N, irrespective of which of the three possible asymptotic extreme value distributions of sample maxima holds for X*. Therefore, the limit Weibull distribution for, say, Y* = X*−1 has no less validity as a single expression for obtaining exceedance probabilities than the generalized extreme value distribution applied directly to X*. If follows that a class of probability distributions for possible use with positive-valued annual maxima can be defined from the application of the inverse function g−1 to Weibull random variables for ɛ ≥ 0. All distributions so obtained are defined over the range 0 ≤ x ≤ ω, which actually excludes all of the asymptotic extreme value distributions of maxima except for the special case of the Type 2 extreme value distribution with location parameter at zero. It is to be expected, however, that the asymptotic distributions will sometimes hold to a high level of approximation within the 0, ω interval. No specific distribution is advocated for annual maxima application because concern here is only with drawing attention to the existence of the distribution class. The transformation approach is illustrated with respect the distribution of reciprocals of random variables generated from a 3-parameter Weibull distribution with ɛ ≥ 0.


1983 ◽  
Vol 20 (04) ◽  
pp. 814-821 ◽  
Author(s):  
K. F. Turkman ◽  
A. M. Walker

A class of quasi-stationary sequences of random variables is introduced. After giving the definition, it is shown that the limiting distributions of the maxima of such sequences, when suitably normalized, converge to one of the three extreme-value distributions.


1982 ◽  
Vol 14 (04) ◽  
pp. 833-854 ◽  
Author(s):  
Jonathan P. Cohen

Let F be a distribution in the domain of attraction of the type I extreme-value distribution Λ(x). In this paper we derive uniform rates of convergence of Fn to Λfor a large class of distributions F. We also generalise the penultimate approximation of Fisher and Tippett (1928) and show that for many F a type II or type III extreme-value distribution gives a better approximation than the limiting type I distribution.


2013 ◽  
Vol 50 (3) ◽  
pp. 900-907 ◽  
Author(s):  
Xin Liao ◽  
Zuoxiang Peng ◽  
Saralees Nadarajah

We discuss tail behaviors, subexponentiality, and the extreme value distribution of logarithmic skew-normal random variables. With optimal normalized constants, the asymptotic expansion of the distribution of the normalized maximum of logarithmic skew-normal random variables is derived. We show that the convergence rate of the distribution of the normalized maximum to the Gumbel extreme value distribution is proportional to 1/(log n)1/2.


2003 ◽  
Vol 35 (04) ◽  
pp. 1007-1027 ◽  
Author(s):  
J.-P. Raoult ◽  
R. Worms

Let F be a distribution function in the domain of attraction of an extreme-value distribution H γ. If F u is the distribution function of the excesses over u and G γ the distribution function of the generalized Pareto distribution, then it is well known that F u (x) converges to G γ(x/σ(u)) as u tends to the end point of F, where σ is an appropriate normalizing function. We study the rate of (uniform) convergence to 0 of F̅ u (x)-G̅γ((x+u-α(u))/σ(u)), where α and σ are two appropriate normalizing functions.


1982 ◽  
Vol 14 (4) ◽  
pp. 833-854 ◽  
Author(s):  
Jonathan P. Cohen

Let F be a distribution in the domain of attraction of the type I extreme-value distribution Λ(x). In this paper we derive uniform rates of convergence of Fn to Λfor a large class of distributions F. We also generalise the penultimate approximation of Fisher and Tippett (1928) and show that for many F a type II or type III extreme-value distribution gives a better approximation than the limiting type I distribution.


Sign in / Sign up

Export Citation Format

Share Document