scholarly journals On zero-trace commutators

1986 ◽  
Vol 34 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Fuad Kittaneh

We present some results concerning the trace of certain trace class commutators of operators acting on a separable, complex Hilbert space. It is shown, among other things, that if X is a Hilbert-Schmidt operator and A is an operator such that AX − XA is a trace class operator, then tr (AX − XA) = 0 provided one of the following conditions holds: (a) A is subnormal and A*A − AA* is a trace class operator, (b) A is a hyponormal contraction and 1 − AA* is a trace class operator, (c) A2 is normal and A*A − AA* is a trace class operator, (d) A2 and A3 are normal. It is also shown that if A is a self - adjoint operator, if f is a function that is analytic on some neighbourhood of the closed disc{z: |z| ≥ ||A||}, and if X is a compact operator such that f (A) X − Xf (A) is a trace class operator, then tr (f (A) X − Xf (A))=0.

1989 ◽  
Vol 31 (2) ◽  
pp. 161-163
Author(s):  
Feng Wenying ◽  
Ji Guoxing

Let B(H) be the algebra of all bounded linear operators on a separable, infinite dimensional complex Hilbert space H. Let C2 and C1 denote respectively, the Hilbert–Schmidt class and the trace class operators in B(H). It is known that C2 and C1 are two-sided*-ideals in B(H) and C2 is a Hilbert space with respect to the inner product(where tr denotes the trace). For any Hilbert–Schmidt operator X let ∥X∥2=(X, X)½ be the Hilbert-Schmidt norm of X.For fixed A ∈ B(H) let δA be the operator on B(H) defined byOperators of the form (1) are called inner derivations and they (as well as their restrictions have been extensively studied (for example [1–3]). In [1], Fuad Kittaneh proved the following result.


1987 ◽  
Vol 29 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Fuad Kittaneh

This paper is a continuation of [3] in which some inequalities for the Schatten p-norm were considered. The purpose of the present paper is to improve some inequalities in [3] as well as to give more inequalities in the same spirit.Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators acting on H. Let K(H) denote the closed two-sided ideal of compact operators on H. For any compact operator A, let |A| = (A*A)½ and s1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeated according to multiplicity. A compact operator A is said to be in the Schatten p-class Cp(1 ≤ p < ∞), if Σ s1(A)p < ∞. The Schatten p-norm of A is defined by ∥A∥p = (Σ si(A)p)1/p. This norm makes Cp into a Banach space. Hence C1 is the trace class and C2 is the Hilbert-Schmidt class. It is reasonable to let C∞ denote the ideal of compact operators K(H), and ∥.∥∞ stand for the usual operator norm.


1985 ◽  
Vol 26 (2) ◽  
pp. 141-143 ◽  
Author(s):  
Fuad Kittaneh

Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. Let K(H) denote the ideal of compact operators on H. For any compact operator A let |A|=(A*A)1,2 and S1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeatedaccording to multiplicity. If, for some 1<p<∞, si(A)p <∞, we say that A is in the Schatten p-class Cp and ∥A∥p=1/p is the p-norm of A. Hence, C1 is the trace class, C2 is the Hilbert–Schmidt class, and C∞ is the ideal of compact operators K(H).


2017 ◽  
Vol 11 (01) ◽  
pp. 1850004
Author(s):  
S. S. Dragomir

By the use of the celebrated Kato’s inequality, we obtain in this paper some new inequalities for trace class operators on a complex Hilbert space [Formula: see text] Natural applications for functions defined by power series of normal operators are given as well.


Positivity ◽  
2020 ◽  
Author(s):  
Minoo Khosheghbal-Ghorabayi ◽  
Ghorban-Ali Bagheri-Bardi

2015 ◽  
Vol 17 (05) ◽  
pp. 1450042
Author(s):  
Weijuan Shi ◽  
Xiaohong Cao

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T ∈ B(H) satisfies Weyl's theorem if σ(T)\σw(T) = π00(T), where σ(T) and σw(T) denote the spectrum and the Weyl spectrum of T, respectively, π00(T) = {λ ∈ iso σ(T) : 0 < dim N(T - λI) < ∞}. T ∈ B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K ∈ B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T2.


2008 ◽  
Vol 2008 ◽  
pp. 1-17
Author(s):  
Adrian P. C. Lim

This article aims to give a formula for differentiating, with respect to , an expression of the form , where and is a diffusion process starting from , taking values in a manifold, and the expectation is taken with respect to the law of this process. is a trace class operator defined by , where , are locally Lipschitz, positive matrices.


Author(s):  
Panchugopal Bikram ◽  
Rahul Kumar ◽  
Rajeeb Mohanta ◽  
Kunal Mukherjee ◽  
Diptesh Saha

Bożejko and Speicher associated a finite von Neumann algebra M T to a self-adjoint operator T on a complex Hilbert space of the form $\mathcal {H}\otimes \mathcal {H}$ which satisfies the Yang–Baxter relation and $ \left\| T \right\| < 1$ . We show that if dim $(\mathcal {H})$ ⩾ 2, then M T is a factor when T admits an eigenvector of some special form.


Sign in / Sign up

Export Citation Format

Share Document