scholarly journals A note on d-symmetric operators

1981 ◽  
Vol 23 (3) ◽  
pp. 471-475
Author(s):  
B. C. Gupta ◽  
P. B. Ramanujan

An operator T on a complex Hilbert space is d-symmetric if , where is the uniform closure of the range of the derivation operator δT(X)=TX−XT. It is shown that if the commutator ideal of the inclusion algebra for a d-symmetric operator is the ideal of all compact operators then T has countable spectrum and T is a quasidiagonal operator. It is also shown that if for a d-symmetric operator I(T) is the double commutant of T then T is diagonal.

1974 ◽  
Vol 26 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Carl Pearcy ◽  
Norberto Salinas

Let be a fixed separable, infinite dimensional complex Hilbert space, and let () denote the algebra of all (bounded, linear) operators on . The ideal of all compact operators on will be denoted by and the canonical quotient map from () onto the Calkin algebra ()/ will be denoted by π.Some open problems in the theory of extensions of C*-algebras (cf. [1]) have recently motivated an increasing interest in the class of all operators in () whose self-commuta tor is compact.


1987 ◽  
Vol 29 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Fuad Kittaneh

This paper is a continuation of [3] in which some inequalities for the Schatten p-norm were considered. The purpose of the present paper is to improve some inequalities in [3] as well as to give more inequalities in the same spirit.Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators acting on H. Let K(H) denote the closed two-sided ideal of compact operators on H. For any compact operator A, let |A| = (A*A)½ and s1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeated according to multiplicity. A compact operator A is said to be in the Schatten p-class Cp(1 ≤ p < ∞), if Σ s1(A)p < ∞. The Schatten p-norm of A is defined by ∥A∥p = (Σ si(A)p)1/p. This norm makes Cp into a Banach space. Hence C1 is the trace class and C2 is the Hilbert-Schmidt class. It is reasonable to let C∞ denote the ideal of compact operators K(H), and ∥.∥∞ stand for the usual operator norm.


1985 ◽  
Vol 26 (2) ◽  
pp. 141-143 ◽  
Author(s):  
Fuad Kittaneh

Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. Let K(H) denote the ideal of compact operators on H. For any compact operator A let |A|=(A*A)1,2 and S1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeatedaccording to multiplicity. If, for some 1<p<∞, si(A)p <∞, we say that A is in the Schatten p-class Cp and ∥A∥p=1/p is the p-norm of A. Hence, C1 is the trace class, C2 is the Hilbert–Schmidt class, and C∞ is the ideal of compact operators K(H).


1973 ◽  
Vol 16 (3) ◽  
pp. 455-456
Author(s):  
I. M. Michael

Let H be a Hilbert space with inner product 〈,). A well-known theorem of von Neumann states that, if S is a symmetric operator in H, then S has a selfadjoint extension in H if and only if S has equal deficiency indices. This result was extended by Naimark, who proved that, even if the deficiency indices of S are unequal, there always exists a Hilbert space H1 such that H ⊆ H1 and S has a selfadjoint extension in H1.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 903
Author(s):  
Marat V. Markin ◽  
Edward S. Sichel

We give a simple, straightforward proof of the non-hypercyclicity of an arbitrary (bounded or not) normal operator A in a complex Hilbert space as well as of the collection e t A t ≥ 0 of its exponentials, which, under a certain condition on the spectrum of A, coincides with the C 0 -semigroup generated by it. We also establish non-hypercyclicity for symmetric operators.


1988 ◽  
Vol 103 (3) ◽  
pp. 473-480
Author(s):  
P. J. Stacey

Let H be a separable complex Hilbert space with orthonormal basis {ei: i ∈ ℕ}, let s be the unilateral shift defined by sei = ei+1 for each i and let K be the algebra of compact operators on H. The present paper classifies the involutory *-anti-automorphisms in the C*-algebra C*(sn, K) generated by K and a positive integral power sn of s. It is shown that, up to conjugacy by *-automorphisms, there are two such involutory *-antiautomorphisms when n is even and one when n is odd.


2005 ◽  
Vol 2005 (7) ◽  
pp. 767-790 ◽  
Author(s):  
I. Parassidis ◽  
P. Tsekrekos

LetA0be a closed, minimal symmetric operator from a Hilbert spaceℍintoℍwith domain not dense inℍ. LetA^also be a correct selfadjoint extension ofA0. The purpose of this paper is (1) to characterize, with the help ofA^, all the correct selfadjoint extensionsBofA0with domain equal toD(A^), (2) to give the solution of their corresponding problems, (3) to find sufficient conditions forBto be positive (definite) whenA^is positive (definite).


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chaoqun Chen ◽  
Fangyan Lu ◽  
Cuimei Cui ◽  
Ling Wang

Let H be a complex Hilbert space. Denote by B H the algebra of all bounded linear operators on H . In this paper, we investigate the non-self-adjoint subalgebras of B H of the form T + B , where B is a block-closed bimodule over a masa and T is a subalgebra of the masa. We establish a sufficient and necessary condition such that the subalgebras of the form T + B has the double commutant property in some particular cases.


1978 ◽  
Vol 21 (2) ◽  
pp. 143-147
Author(s):  
S. J. Cho

Let be a separable complex infinite dimensional Hilbert space, the algebra of bounded operators in the ideal of compact operators, and the quotient map. Throughout this paper A denotes a separable nuclear C*-algebra with unit. An extension of A is a unital *-monomorphism of A into . Two extensions τ1 and τ2 are strongly (weakly) equivalent if there exists a unitary (Fredholm partial isometry) U in such thatfor all a in A.


Author(s):  
Paul Binding ◽  
Patrick J. Browne ◽  
Lawrence Turyn

SynopsisLetbe, for each λ∈ℝk, a compact symmetric operator on a complex Hilbert space. Let the“fundamental” eigenset Z be denned by the relation λ∈Z if and only if W(λ) has maximal eigenvalue one. Conditions are given for Z to be the boundary of an open convex set P. A detailed investigation is given of the structure of P, including its recession cone and its representations as intersections of half-spaces.


Sign in / Sign up

Export Citation Format

Share Document