scholarly journals Strong Gröbner bases for polynomials over a principal ideal ring

2001 ◽  
Vol 64 (3) ◽  
pp. 505-528 ◽  
Author(s):  
Graham H. Norton ◽  
Ana Sǎlǎgean

Gröbner bases have been generalised to polynomials over a commutative ring A in several ways. Here we focus on strong Gröbner bases, also known as D-bases. Several authors have shown that strong Gröbner bases can be effectively constructed over a principal ideal domain. We show that this extends to any principal ideal ring. We characterise Gröbner bases and strong Gröbner bases when A is a principal ideal ring. We also give algorithms for computing Gröbner bases and strong Gröbner bases which generalise known algorithms to principal ideal rings. In particular, we give an algorithm for computing a strong Gröbner basis over a finite-chain ring, for example a Galois ring.


2001 ◽  
Vol 6 ◽  
pp. 240-250 ◽  
Author(s):  
Graham H. Norton ◽  
Ana Sǎlǎgean




2013 ◽  
Vol 12 (07) ◽  
pp. 1350034 ◽  
Author(s):  
AMIR HASHEMI ◽  
PARISA ALVANDI

Norton and Sălăgean [Strong Gröbner bases and cyclic codes over a finite-chain ring, in Proc. Workshop on Coding and Cryptography, Paris, Electronic Notes in Discrete Mathematics, Vol. 6 (Elsevier Science, 2001), pp. 391–401] have presented an algorithm for computing Gröbner bases over finite-chain rings. Byrne and Fitzpatrick [Gröbner bases over Galois rings with an application to decoding alternant codes, J. Symbolic Comput.31 (2001) 565–584] have simultaneously proposed a similar algorithm for computing Gröbner bases over Galois rings (a special kind of finite-chain rings). However, they have not incorporated Buchberger's criteria into their algorithms to avoid unnecessary reductions. In this paper, we propose the adapted version of these criteria for polynomials over finite-chain rings and we show how to apply them on Norton–Sălăgean algorithm. The described algorithm has been implemented in Maple and experimented with a number of examples for the Galois rings.



2019 ◽  
Vol 18 (02) ◽  
pp. 1950023 ◽  
Author(s):  
Hai Q. Dinh ◽  
Bac T. Nguyen ◽  
Songsak Sriboonchitta ◽  
Thang M. Vo

For any odd prime [Formula: see text] such that [Formula: see text], the structures of all [Formula: see text]-constacyclic codes of length [Formula: see text] over the finite commutative chain ring [Formula: see text] [Formula: see text] are established in term of their generator polynomials. When the unit [Formula: see text] is a square, each [Formula: see text]-constacyclic code of length [Formula: see text] is expressed as a direct sum of two constacyclic codes of length [Formula: see text]. In the main case that the unit [Formula: see text] is not a square, it is shown that the ambient ring [Formula: see text] is a principal ideal ring. From that, the structure, number of codewords, duals of all such [Formula: see text]-constacyclic codes are obtained. As an application, we identify all self-orthogonal, dual-containing, and the unique self-dual [Formula: see text]-constacyclic codes of length [Formula: see text] over [Formula: see text].



2019 ◽  
Vol 26 (02) ◽  
pp. 181-194 ◽  
Author(s):  
Hai Q. Dinh ◽  
Bac T. Nguyen ◽  
Songsak Sriboonchitta

For any odd prime p such that pm ≡ 3 (mod 4), consider all units Λ of the finite commutative chain ring [Formula: see text] that have the form Λ = Λ0 + uΛ1 + ⋯ + ua−1 Λa−1, where Λ0, Λ1, …, Λa−1 ∊ 𝔽pm, Λ0 ≠ 0, Λ1 ≠ 0. The class of Λ-constacyclic codes of length 4ps over ℛa is investigated. If the unit Λ is a square, each Λ-constacyclic code of length 4ps is expressed as a direct sum of a −λ-constacyclic code and a λ-constacyclic code of length 2ps. In the main case that the unit Λ is not a square, we prove that the polynomial x4 − λ0 can be decomposed as a product of two quadratic irreducible and monic coprime factors, where [Formula: see text]. From this, the ambient ring [Formula: see text] is proven to be a principal ideal ring, whose maximal ideals are ⟨x2 + 2ηx + 2η2⟩ and ⟨x2 − 2ηx + 2η2⟩, where λ0 = −4η4. We also give the unique self-dual Type 1 Λ-constacyclic codes of length 4ps over ℛa. Furthermore, conditions for a Type 1 Λ-constacyclic code to be self-orthogonal and dual-containing are provided.



Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 307
Author(s):  
Sami Alabiad ◽  
Yousef Alkhamees

A finite ring with an identity whose lattice of ideals forms a unique chain is called a finite chain ring. Let R be a commutative chain ring with invariants p,n,r,k,m. It is known that R is an Eisenstein extension of degree k of a Galois ring S=GR(pn,r). If p−1 does not divide k, the structure of the unit group U(R) is known. The case (p−1)∣k was partially considered by M. Luis (1991) by providing counterexamples demonstrated that the results of Ayoub failed to capture the direct decomposition of U(R). In this article, we manage to determine the structure of U(R) when (p−1)∣k by fixing Ayoub’s approach. We also sharpen our results by introducing a system of generators for the unit group and enumerating the generators of the same order.



2000 ◽  
Vol 46 (3) ◽  
pp. 1060-1067 ◽  
Author(s):  
G.H. Norton ◽  
A. Salagean


2007 ◽  
Vol 45 (2) ◽  
pp. 219-227 ◽  
Author(s):  
E. Martínez-Moro ◽  
I. F. Rúa


1991 ◽  
Vol 34 (3) ◽  
pp. 364-367 ◽  
Author(s):  
Eric Jespers

AbstractA ring R is said to be an absolute subretract if for any ring S in the variety generated by R and for any ring monomorphism f from R into S, there exists a ring morphism g from S to R such that gf is the identity mapping. This concept, introduced by Gardner and Stewart, is a ring theoretic version of an injective notion in certain varieties investigated by Davey and Kovacs.Also recall that a special principal ideal ring is a local principal ring with nonzero nilpotent maximal ideal. In this paper (finite) special principal ideal rings that are absolute subretracts are studied.



Sign in / Sign up

Export Citation Format

Share Document