On lower estimates for linear forms involving certain transcendental numbers

1976 ◽  
Vol 14 (2) ◽  
pp. 161-179 ◽  
Author(s):  
Keijo Väänänen

Letwhere λ is rational and not an integer. The author investigates lower estimates for example forwhere the αi are distinct rational numbers not 0, and where x1, …, xk, are integers and

Author(s):  
K. Rogers

Let Z, Q, C denote respectively the ring of rational integers, the field of rational numbers and the field of complex numbers. Minkowski (4) solved the problem of minimizingfor x, y ∈ Z(i) or Z(ρ), where a, b, c, d ∈ C have fixed determinant Δ ≠ 0. Here ρ = exp 2/3πi, and Z(i) and Z(p) are the rings of integers in Q(i) and Q(ρ) respectively. In fact he found the best possible resultsfor Z(i), andfor Z(ρ), wherewhile Buchner (1) used Minkowski's method to show thatfor Z(i√2). Hlawka(3) has also proved (1·2), and Cassels, Ledermann and Mahler (2) have proved both (1·2) and (1·3). In a paper being prepared jointly by H. P. F. Swinnerton-Dyer and the author, general problems of the geometry of numbers in complex space are discussed and a systematic method given for solving the above problem for all complex quadratic fields Q(ϑ). Here, ϑ is a non-real number satisfying. an irreduc7ible quadratic equation with rational coefficients. The above problem is solved in detail for Q(i√5), for whichand the ‘critical forms’ can be reduced to


1971 ◽  
Vol 69 (1) ◽  
pp. 157-161 ◽  
Author(s):  
J. Coates

Let α1, …, αn be n ≥ 2 algebraic numbers such that log α1,…, log αn and 2πi are linearly independent over the field of rational numbers Q. It is well known (see (6), Ch. 1) that the Thue–Siegel–Roth theorem implies that, for each positive number δ, there are only finitely many integers b1,…, bn satisfyingwhere H denotes the maximum of the absolute values of b1, …, bn. However, such an argument cannot provide an explicit upper bound for the solutions of (1), because of the non-effective nature of the theorem of Thue–Siegel–Roth. An effective proof that (1) has only a finite number of solutions was given by Gelfond (6) in the case n = 2, and by Baker(1) for arbitrary n. The work of both these authors is based on arguments from the theory of transcendental numbers. Baker's effective proof of (1) has important applications to other problems in number theory; in particular, it provides an algorithm for solving a wide class of diophantine equations in two variables (2).


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


1962 ◽  
Vol 58 (2) ◽  
pp. 229-234 ◽  
Author(s):  
L. Mirsky

Throughout this note we shall consider a fixed polynomial with complex coefficients and of degree n ≥ 2. Its zeros will be denoted by ξ1, ξ2, …, ξn where the numbering is such that Making use of Jensen's integral formula, Mahler (4) showed that, for l ≥ k < n, A slightly weaker result had been established by Feldman in an earlier publication (2). Mahler's inequality (1) is of importance in the study of transcendental numbers, and our first object is to sharpen his bound by proving the following result.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


1962 ◽  
Vol 14 ◽  
pp. 565-567 ◽  
Author(s):  
P. J. McCarthy

The Bernoulli polynomials of order k, where k is a positive integer, are defined byBm(k)(x) is a polynomial of degree m with rational coefficients, and the constant term of Bm(k)(x) is the mth Bernoulli number of order k, Bm(k). In a previous paper (3) we obtained some conditions, in terms of k and m, which imply that Bm(k)(x) is irreducible (all references to irreducibility will be with respect to the field of rational numbers). In particular, we obtained the following two results.


2015 ◽  
Vol 11 (03) ◽  
pp. 869-892
Author(s):  
Emre Alkan

Using integral representations with carefully chosen rational functions as integrands, we find new families of transcendental numbers that are not U-numbers, according to Mahler's classification, represented by a series whose terms involve rising factorials and reciprocals of binomial coefficients analogous to Apéry type series. Explicit descriptions of these numbers are given as linear combinations with coefficients lying in a suitable real algebraic extension of rational numbers using elementary functions evaluated at arguments belonging to the same field. In this way, concrete examples of transcendental numbers which can be expressed as combinations of classical mathematical constants such as π and Baker periods are given together with upper bounds on their wn measures.


1953 ◽  
Vol 49 (2) ◽  
pp. 190-193 ◽  
Author(s):  
H. Davenport

Let L1, …, Ln be n homogeneous linear forms in n variables u1, …, un, with non-zero determinant Δ. Suppose that L1, …, Lr have real coefficients, that Lr+1, …, Lr+s have complex coefficients, and that the form Lr+s+j is the complex conjugate of the form Lr+j for j = 1, …, s, where r + 2s = n. Letfor integral u1, …, un, not all zero. For any n numbers α1, …, αn of the same ‘type’ as the forms L1, …, Ln (that is, α1, …, αr real, αr+1, …, αr+s complex, αr+s+j = ᾱr+j), let


1951 ◽  
Vol 47 (2) ◽  
pp. 251-259 ◽  
Author(s):  
J. H. H. Chalk ◽  
C. A. Rogers

Let X denote the general point with coordinates (x1, x2, x3) in 3-dimensional space; and let P(X) be the function defined by


1947 ◽  
Vol 43 (2) ◽  
pp. 137-152 ◽  
Author(s):  
H. Davenport

Let ξ, η, ζ be linear forms in u, v, w with real coefficients and determinant Δ ≠ 0. A conjecture of Minkowski, which was subsequently proved by Remak, tells us that for any real numbers a, b, c there exist integral values of u, v, w for whichand the constant ⅛ on the right is best possible.


Sign in / Sign up

Export Citation Format

Share Document