Irreducibility of Bernoulli Polynomials of Higher Order

1962 ◽  
Vol 14 ◽  
pp. 565-567 ◽  
Author(s):  
P. J. McCarthy

The Bernoulli polynomials of order k, where k is a positive integer, are defined byBm(k)(x) is a polynomial of degree m with rational coefficients, and the constant term of Bm(k)(x) is the mth Bernoulli number of order k, Bm(k). In a previous paper (3) we obtained some conditions, in terms of k and m, which imply that Bm(k)(x) is irreducible (all references to irreducibility will be with respect to the field of rational numbers). In particular, we obtained the following two results.

2018 ◽  
Vol 107 (02) ◽  
pp. 272-288
Author(s):  
TOPI TÖRMÄ

We study generalized continued fraction expansions of the form $$\begin{eqnarray}\frac{a_{1}}{N}\frac{}{+}\frac{a_{2}}{N}\frac{}{+}\frac{a_{3}}{N}\frac{}{+}\frac{}{\cdots },\end{eqnarray}$$ where $N$ is a fixed positive integer and the partial numerators $a_{i}$ are positive integers for all $i$ . We call these expansions $\operatorname{dn}_{N}$ expansions and show that every positive real number has infinitely many $\operatorname{dn}_{N}$ expansions for each $N$ . In particular, we study the $\operatorname{dn}_{N}$ expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each $N$ , a $\operatorname{dn}_{N}$ expansion with bounded partial numerators.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Jitender Singh

A sequence of rational numbers as a generalization of the sequence of Bernoulli numbers is introduced. Sums of products involving the terms of this generalized sequence are then obtained using an application of Faà di Bruno's formula. These sums of products are analogous to the higher order Bernoulli numbers and are used to develop the closed form expressions for the sums of products involving the power sums Ψk(x,n):=∑d|n‍μ(d)dkSkx/d,  n∈ℤ+ which are defined via the Möbius function μ and the usual power sum Sk(x) of a real or complex variable x. The power sum Sk(x) is expressible in terms of the well-known Bernoulli polynomials by Sk(x):=(Bk+1(x+1)-Bk+1(1))/(k+1).


1967 ◽  
Vol 4 (03) ◽  
pp. 543-552 ◽  
Author(s):  
Morris Skibinsky

Let p denote the class of all probability measures defined on the Borel subsets of the unit interval I = [0, 1]. For each positive integer n, take Mn is convex, closed, bounded, and n-dimensional; the convex hull of the space curve {(t,t2, …, tn ): 0 ≦ t ≦ 1}; e.g., see Theorems 7.2, 7.3 of [1]. At each point (c1, C2, …, cn ) of Mn , define Note that v −, v + depend only on C1, C2, …, Cn− 1; Vm only on cn ; We shall as notational convenience dictates and as will be apparent from the context regard v ± n as functions on Mn− 1 or on higher order moment spaces and also regard Vn as a function on moment spaces of order higher than n.


1967 ◽  
Vol 4 (3) ◽  
pp. 543-552 ◽  
Author(s):  
Morris Skibinsky

Let p denote the class of all probability measures defined on the Borel subsets of the unit interval I = [0, 1]. For each positive integer n, take Mn is convex, closed, bounded, and n-dimensional; the convex hull of the space curve {(t,t2, …, tn): 0 ≦ t ≦ 1}; e.g., see Theorems 7.2, 7.3 of [1]. At each point (c1, C2, …, cn) of Mn, define Note that v−, v+ depend only on C1, C2, …, Cn− 1; Vm only on cn; We shall as notational convenience dictates and as will be apparent from the context regard v±n as functions on Mn− 1 or on higher order moment spaces and also regard Vn as a function on moment spaces of order higher than n.


Author(s):  
H. S. Kim ◽  
S. S. Sheinin

The importance of image simulation in interpreting experimental lattice images is well established. Normally, in carrying out the required theoretical calculations, only zero order Laue zone reflections are taken into account. In this paper we assess the conditions for which this procedure is valid and indicate circumstances in which higher order Laue zone reflections may be important. Our work is based on an analysis of the requirements for obtaining structure images i.e. images directly related to the projected potential. In the considerations to follow, the Bloch wave formulation of the dynamical theory has been used.The intensity in a lattice image can be obtained from the total wave function at the image plane is given by: where ϕg(z) is the diffracted beam amplitide given by In these equations,the z direction is perpendicular to the entrance surface, g is a reciprocal lattice vector, the Cg(i) are Fourier coefficients in the expression for a Bloch wave, b(i), X(i) is the Bloch wave excitation coefficient, ϒ(i)=k(i)-K, k(i) is a Bloch wave vector, K is the electron wave vector after correction for the mean inner potential of the crystal, T(q) and D(q) are the transfer function and damping function respectively, q is a scattering vector and the summation is over i=l,N where N is the number of beams taken into account.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 281
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran

In the present work, a new extension of the two-variable Fubini polynomials is introduced by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini polynomials. Then, some useful relations including the Stirling numbers of the second and the first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived. Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the unipoly function, and diverse properties involving integral and derivative properties are attained. Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling numbers of the second and the first kinds, and the Daehee polynomials are acquired.


1991 ◽  
Vol 14 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Clark Kimberling

Associated with any irrational numberα>1and the functiong(n)=[αn+12]is an array{s(i,j)}of positive integers defined inductively as follows:s(1,1)=1,s(1,j)=g(s(1,j−1))for allj≥2,s(i,1)=the least positive integer not amongs(h,j)forh≤i−1fori≥2, ands(i,j)=g(s(i,j−1))forj≥2. This work considers algebraic integersαof degree≥3for which the rows of the arrays(i,j)partition the set of positive integers. Such an array is called a Stolarsky array. A typical result is the following (Corollary 2): ifαis the positive root ofxk−xk−1−…−x−1fork≥3, thens(i,j)is a Stolarsky array.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


1955 ◽  
Vol 7 ◽  
pp. 347-357 ◽  
Author(s):  
D. H. Lehmer

This paper is concerned with the numbers which are relatively prime to a given positive integerwhere the p's are the distinct prime factors of n. Since these numbers recur periodically with period n, it suffices to study the ϕ(n) numbers ≤n and relatively prime to n.


Sign in / Sign up

Export Citation Format

Share Document