scholarly journals Pseudo-differential equations connected with p-adic forms and local zeta functions

2004 ◽  
Vol 70 (1) ◽  
pp. 73-86 ◽  
Author(s):  
W. A. Zuniga-Galindo

We study the asymptotics of fundamental solutions of p-adic pseudo-differential equations of type where f(∂,β) is a pseudo-differential operator with symbol , f is a form of arbitrary degree with coefficients in a p-adic field, λ ≥ 0, and g is a Schwartz-Bruhat function.

2015 ◽  
Vol 7 (1) ◽  
pp. 101-107 ◽  
Author(s):  
M.M. Osypchuk

A fundamental solution for some class of pseudo-differential equations is constructed by the method based on the theory of perturbations. We consider a symmetric $\alpha$-stable process in multidimensional Euclidean space. Its generator $\mathbf{A}$ is a pseudo-differential operator whose symbol is given by $-c|\lambda|^\alpha$, were the constants $\alpha\in(1,2)$ and $c>0$ are fixed. The vector-valued operator $\mathbf{B}$ has the symbol $2ic|\lambda|^{\alpha-2}\lambda$. We construct a fundamental solution of the equation $u_t=(\mathbf{A}+(a(\cdot),\mathbf{B}))u$ with a continuous bounded vector-valued function $a$.


2018 ◽  
Vol 23 (3) ◽  
pp. 492-506 ◽  
Author(s):  
Vladimir B. Vasilyev ◽  
Alexander V. Vasilyev

We introduce a digital pseudo-differential operator acting in discrete Sobolev--Slobodetskii spaces and consider pseudo-differential equations with such operators in a discrete half-space. The theorem on a general solution of such equations is proved for a special case.


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2457-2469
Author(s):  
Akhilesh Prasad ◽  
S.K. Verma

In this article, weintroduce a new index transform associated with the cone function Pi ??-1/2 (2?x), named as Mehler-Fock-Clifford transform and study its some basic properties. Convolution and translation operators are defined and obtained their estimates under Lp(I, x-1/2 dx) norm. The test function spaces G? and F? are introduced and discussed the continuity of the differential operator and MFC-transform on these spaces. Moreover, the pseudo-differential operator (p.d.o.) involving MFC-transform is defined and studied its continuity between G? and F?.


2020 ◽  
Vol 26 (2) ◽  
pp. 297-307
Author(s):  
Petro I. Kalenyuk ◽  
Yaroslav O. Baranetskij ◽  
Lubov I. Kolyasa

AbstractWe study a nonlocal problem for ordinary differential equations of {2n}-order with involution. Spectral properties of the operator of this problem are analyzed and conditions for the existence and uniqueness of its solution are established. It is also proved that the system of eigenfunctions of the analyzed problem forms a Riesz basis.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850016 ◽  
Author(s):  
A. A. Hemeda

In this work, a simple new iterative technique based on the integral operator, the inverse of the differential operator in the problem under consideration, is introduced to solve nonlinear integro-differential and systems of nonlinear integro-differential equations (IDEs). The introduced technique is simpler and shorter in its computational procedures and time than the other methods. In addition, it does not require discretization, linearization or any restrictive assumption of any form in providing analytical or approximate solution to linear and nonlinear equations. Also, this technique does not require calculating Adomian’s polynomials, Lagrange’s multiplier values or equating the terms of equal powers of the impeding parameter which need more computational procedures and time. These advantages make it reliable and its efficiency is demonstrated with numerical examples.


Sign in / Sign up

Export Citation Format

Share Document