scholarly journals A question of Paul Erdös and nilpotent-by-finite groups

2001 ◽  
Vol 64 (2) ◽  
pp. 245-254
Author(s):  
Bijan Taeri

Let n be a positive integer or infinity (denoted ∞), k a positive integer. We denote by Ωk(n) the class of groups G such that, for every subset X of G of cardinality n + 1, there exist distinct elements x, y ∈ X and integers t0, t1…, tk such that , where xi, ∈ {x, y}, i = 0, 1,…,k, x0 ≠ x1. If the integers t0, t1,…,tk are the same for any subset X of G, we say that G is in the class Ω̅k(n). The class k (n) is defined exactly as Ωk(n) with the additional conditions . Let t2, t3,…,tk be fixed integers. We denote by the class of all groups G such that for any infinite subsets X and Y there exist x ∈ X, y ∈ Y such that , where xi ∈ {x, y}, x0 ≠ x1, i = 2, 3, …, k. Here we prove that (1) If G ∈ k(2) is a finitely generated soluble group, then G is nilpotent.(2) If G ∈ Ωk(∞) is a finitely generated soluble group, then G is nilpotentby-finite.(3) If G ∈ Ω̅k(n), n a positive integer, is a finitely generated residually finite group, then G is nilpotent-by-finite.(4) If G is an infinite -group in which every nontrivial finitely generated subgroup has a nontrivial finite quotient, then G is nilpotent-by-finite.

1977 ◽  
Vol 24 (1) ◽  
pp. 117-120 ◽  
Author(s):  
Ronald Hirshon

AbstractIf ε is an endomorphism of a finitely generated residually finite group onto a subgroup Fε of finite index in F, then there exists a positive integer k such that ε is an isomorphism of Fεk. If K is the kernel of ε, then K is a finite group so that if F is a non trivial free product or if F is torsion free, then ε is an isomorphism on F. If ε is an endomorphism of a finitely generated resedually finite group onto a subgroup Fε (not necessatily of ginite index in F) and if the kernel of ε obeys the minimal condition for subgroups then there exists a positive integer k such that ε is an isomorphism on Fεk.


2011 ◽  
Vol 03 (02) ◽  
pp. 153-160 ◽  
Author(s):  
W. LÜCK ◽  
D. OSIN

We show that the first L2-betti number of a finitely generated residually finite group can be estimated from below by using ordinary first betti numbers of finite index normal subgroups. As an application, we construct a finitely generated infinite residually finite torsion group with positive first L2-betti number.


1976 ◽  
Vol 15 (3) ◽  
pp. 347-350 ◽  
Author(s):  
P.F. Pickel

Let F(G) denote the set of isomorphism classes of finite quotients of the group G. We say that groups G and H have isomorphic finite quotients (IFQ) if F(G) = F(H). In this note, we show that a finitely generated residually finite group G cannot have the same finite quotients as a proper homomorphic image (G is IFQ hopfian). We then obtain some results on groups with the same finite quotients as a relatively free group.


Author(s):  
Howard Smith ◽  
James Wiegold

AbstractIn a paper published in this journal [1], J. T. Buckely, J. C. Lennox, B. H. Neumann and the authors considered the class of CF-groups, that G such that |H: CoreG (H)| is finite for all subgroups H. It is shown that locally finite CF-groups are abelian-by-finite and BCF, that is, there is an integer n such that |H: CoreG(H)| ≤ n for all subgroups H. The present paper studies these properties in the class of locally graded groups, the main result being that locally graded BCF-groups are abelian-by-finite. Whether locally graded CF-groups are BFC remains an open question. In this direction, the following problems is posed. Does there exist a finitely generated infinite periodic residually finite group in which all subgroups are finite or of finite index? Such groups are locally graded and CF but not BCF.


1989 ◽  
Vol 106 (3) ◽  
pp. 385-388 ◽  
Author(s):  
Alexander Lubotzky ◽  
Avinoam Mann

The recent constructions, by Rips and Olshanskii, of infinite groups with all proper subgroups of prime order, and similar ‘monsters’, show that even under the imposition of apparently very strong finiteness conditions, the structure of infinite groups can be rather weird. Thus it seems reasonable to impose the type of condition that enables us to apply the theory of finite groups. Two such conditions are local finiteness and residual finiteness, and here we are interested in the latter. Specifically, we consider residually finite groups of finite rank, where a group is said to have rank r, if all finitely generated subgroups of it can be generated by r elements. Recall that a group is said to be virtually of some property, if it has a subgroup of finite index with this property. We prove the following result:Theorem 1. A residually finite group of finite rank is virtually locally soluble.


2000 ◽  
Vol 61 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Nadir Trabelsi

LetGbe a finitely generated soluble group. The main result of this note is to prove thatGis nilpotent-by-finite if, and only if, for every pairX,Yof infinite subsets ofG, there exist anxinX,yinYand two positive integersm=m(x,y),n=n(x,y) satisfying [x,nym] = 1. We prove also that ifGis infinite and ifmis a positive integer, thenGis nilpotent-by-(finite of exponent dividingm) if, and only if, for every pairX,Yof infinite subsets ofG, there exist anxinX,yinYand a positive integern=n(x,y) satisfying [x,nym] = 1.


2000 ◽  
Vol 62 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Alireza Abdollahi

Let k be a positive integer. We denote by ɛk(∞) the class of all groups in which every infinite subset contains two distinct elements x, y such that [x,k y] = 1. We say that a group G is an -group provided that whenever X, Y are infinite subsets of G, there exists x ∈ X, y ∈ Y such that [x,k y] = 1. Here we prove that:(1) If G is a finitely generated soluble group, then G ∈ ɛ3(∞) if and only if G is finite by a nilpotent group in which every two generator subgroup is nilpotent of class at most 3.(2) If G is a finitely generated metabelian group, then G ∈ ɛk(∞) if and only if G/Zk (G) is finite, where Zk (G) is the (k + 1)-th term of the upper central series of G.(3) If G is a finitely generated soluble ɛk(∞)-group, then there exists a positive integer t depending only on k such that G/Zt (G) is finite.(4) If G is an infinite -group in which every non-trivial finitely generated subgroup has a non-trivial finite quotient, then G is k-Engel. In particular, G is locally nilpotent.


2006 ◽  
Vol 16 (01) ◽  
pp. 141-160 ◽  
Author(s):  
ERIC JESPERS ◽  
DAVID RILEY

We characterize the structure of linear semigroups satisfying certain global and local nilpotence conditions and deduce various Engel-type results. For example, using a form of Zel'manov's solution of the restricted Burnside problem we are able to show that a finitely generated residually finite group is nilpotent if and only if it satisfies a certain 4-generator property of semigroups we call WMN. Methods of linear semigroups then allow us to prove that a linear semigroup is Mal'cev nilpotent precisely when it satisfies WMN. As an application, we show that a finitely generated associative algebra is nilpotent when viewed as a Lie algebra if and only if its adjoint semigroup is WMN.


2005 ◽  
Vol 15 (03) ◽  
pp. 571-576 ◽  
Author(s):  
PAVEL SHUMYATSKY

Let G be a residually finite group satisfying some identity w ≡ 1. Suppose G is generated by a normal commutator-closed set X of p-elements. We prove that G is locally finite.


Sign in / Sign up

Export Citation Format

Share Document