scholarly journals On totally paranormal operators

2002 ◽  
Vol 66 (3) ◽  
pp. 425-441 ◽  
Author(s):  
Christoph Schmoeger

A continuous linear operator on a complex Banach space is said to be paranormal if ‖Tx‖2 ≤ ‖T2x‖ ‖x‖ for all x ∈ X. T is called totally paranormal if T–λ is paranormal for every λ ∈ C. In this paper we investigate the class of totally paranormal operators. We shall see that Weyl's theorem holds for operators in this class. We also show that for totally paranormal operators the Weyl spectrum satisfies the spectral mapping theorem. In Section 5 of this paper we investigate the operator equations eT = eS and eTeS = eSeT for totally paranormal operators T and S.

1968 ◽  
Vol 8 (1) ◽  
pp. 119-127 ◽  
Author(s):  
S. J. Bernau

Recall that the spectrum, σ(T), of a linear operator T in a complex Banach space is the set of complex numbers λ such that T—λI does not have a densely defined bounded inverse. It is known [7, § 5.1] that σ(T) is a closed subset of the complex plane C. If T is not bounded, σ(T) may be empty or the whole of C. If σ(T) ≠ C and T is closed the spectral mapping theorem, is valid for complex polynomials p(z) [7, §5.7]. Also, if T is closed and λ ∉ σ(T), (T–λI)−1 is everywhere defined.


1983 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
L. Drewnowski

Following Lotz, Peck and Porta [9], a continuous linear operator from one Banach space into another is called a semi-embedding if it is one-to-one and maps the closed unit ball of the domain onto a closed (hence complete) set. (Below we shall allow the codomain to be an F-space, i.e., a complete metrisable topological vector space.) One of the main results established in [9] is that if X is a compact scattered space, then every semi-embedding of C(X) into another Banach space is an isomorphism ([9], Main Theorem, (a)⇒(b)).


2001 ◽  
Vol 14 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Anwar A. Al-Nayef

The spectrum σ(A) of a continuous linear operator A:E→E defined on a Banach space E, which is contracting with respect to the Hausdorff measure of noncompactness, is investigated.


Filomat ◽  
2014 ◽  
Vol 28 (2) ◽  
pp. 411-419
Author(s):  
Young Han ◽  
Won Na

Let T or T? be an algebraically quasi-paranormal operator acting on Hilbert space. We prove : (i) Weyl?s theorem holds for f (T) for every f ? H(?(T)); (ii) a-Browder?s theorem holds for f (S) for every S ? T and f ? H(?(S)); (iii) the spectral mapping theorem holds for the Weyl spectrum of T and for the essential approximate point spectrum of T.


2004 ◽  
Vol 76 (2) ◽  
pp. 291-302 ◽  
Author(s):  
M. Berkani ◽  
A. Arroud

AbstractLet T be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of T is the set σBW(T) of all λ ∈ Сsuch that T − λI is not a B-Fredholm operator of index 0. Let E(T) be the set of all isolated eigenvalues of T. The aim of this paper is to show that if T is a hyponormal operator, then T satisfies generalized Weyl's theorem σBW(T) = σ(T)/E(T), and the B-Weyl spectrum σBW(T) of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of operators satisfying generalized Weyl's theorem.


2006 ◽  
Vol 13 (2) ◽  
pp. 307-313
Author(s):  
Salah Mecheri

Abstract Let 𝐴 be a bounded linear operator acting on a Hilbert space 𝐻. The 𝐵-Weyl spectrum of 𝐴 is the set σ 𝐵𝑤(𝐴) of all ⋋ ∈ ℂ such that 𝐴 – ⋋𝐼 is not a 𝐵-Fredholm operator of index 0. Let 𝐸(𝐴) be the set of all isolated eigenvalues of 𝐴. Recently, in [Berkani and Arroud, J. Aust. Math. Soc. 76: 291–302, 2004] the author showed that if 𝐴 is hyponormal, then 𝐴 satisfies the generalized Weyl's theorem σ 𝐵𝑤(𝐴) = σ(𝐴) \ 𝐸(𝐴), and the 𝐵-Weyl spectrum σ 𝐵𝑤(𝐴) of 𝐴 satisfies the spectral mapping theorem. Lee [Han, Proc. Amer. Math. Soc. 128: 2291–2296, 2000] showed that Weyl's theorem holds for algebraically hyponormal operators. In this paper the above results are generalized to an algebraically (𝑝, 𝑘)-quasihyponormal operator which includes an algebraically hyponormal operator.


2008 ◽  
Vol 77 (3) ◽  
pp. 515-520
Author(s):  
JARNO TALPONEN

AbstractThis paper contains two results: (a) if $\mathrm {X}\neq \{0\}$ is a Banach space and (L,τ) is a nonempty locally compact Hausdorff space without isolated points, then each linear operator T:C0(L,X)→C0(L,X) whose range does not contain an isomorphic copy of c00 satisfies the Daugavet equality $\|\mathbf {I}+T\|=1+\|T\|$; (b) if Γ is a nonempty set and X and Y are Banach spaces such that X is reflexive and Y does not contain c0 isomorphically, then any continuous linear operator T:c0(Γ,X)→Y is weakly compact.


1974 ◽  
Vol 26 (6) ◽  
pp. 1384-1389 ◽  
Author(s):  
Chandler Davis ◽  
Peter Rosenthal

Let be a complex Banach space and the algebra of bounded operators on . M. Rosenblum's theorem [13; 12] (also discovered by M. G. Kreĭn, cf. [9]) states that (if A, B are fixed bounded operators) the spectrum of the operator on defined by = AX – XB is contained in σ (A) – σ(B) = {α – β : α∊σ(A), β∊σ(B)}. In particular, the condition σ(A) ∩ σ(B) = Ø implies that for each Y ∊ there is a unique X ∊ such that AX – XB = Y. This does not completely settle the question of solvability of the equation AX – XB = Y: for example, if A is the backward unilateral shift and B = 0, then the equation has a solution (for any Y) even though σ(B) ⊆ σ(A).


1977 ◽  
Vol 20 (4) ◽  
pp. 293-299 ◽  
Author(s):  
N. J. Kalton

Let F be an arbitrary topological vector space; we shall say that a subset S of F is quasi-convex if the set of continuous affine functionals on S separates the points of S. If X is a Banach space and T : X → F is a continuous linear operator, then T is quasi-convex if is quasi-convex, where U is the unit ball of X.


Sign in / Sign up

Export Citation Format

Share Document