scholarly journals Linear operators whose domain is locally convex

1977 ◽  
Vol 20 (4) ◽  
pp. 293-299 ◽  
Author(s):  
N. J. Kalton

Let F be an arbitrary topological vector space; we shall say that a subset S of F is quasi-convex if the set of continuous affine functionals on S separates the points of S. If X is a Banach space and T : X → F is a continuous linear operator, then T is quasi-convex if is quasi-convex, where U is the unit ball of X.

1982 ◽  
Vol 23 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Demetrios Koros

Altman [1] showed that Riesz-Schauder theory remains valid for a completely continuous linear operator on a locally convex Hausdorflf topological vector space over the complex field. In a later paper [2], he proved an analogue of the Aronszajn-Smith result; specifically, he showed that such an operator possesses a proper closed invariant subspace. The purpose of this paper is to show that Ringrose's theory of superdiagonal forms for compact linear operators [3] can be generalized to the case of a completely continuous linear operator on a locally convex Hausdorff topological vector space over the complex field. However, the proof given in [3] requires considerable modification.


1983 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
L. Drewnowski

Following Lotz, Peck and Porta [9], a continuous linear operator from one Banach space into another is called a semi-embedding if it is one-to-one and maps the closed unit ball of the domain onto a closed (hence complete) set. (Below we shall allow the codomain to be an F-space, i.e., a complete metrisable topological vector space.) One of the main results established in [9] is that if X is a compact scattered space, then every semi-embedding of C(X) into another Banach space is an isomorphism ([9], Main Theorem, (a)⇒(b)).


1968 ◽  
Vol 20 ◽  
pp. 1387-1390
Author(s):  
Ludvik Janos

Let X be a topological space and ϕ: X ⟶ X a continuous self-mapping of X. We say that ϕ is linearized in L by Φ if there exists a topological embedding μ: X ⟶ L of the space X into the linear topological vector space L such that for all x ϵ X, μ (ϕ (x)) = Φ (μ (x)), where ϕ is a continuous linear operator on L.


1997 ◽  
Vol 20 (3) ◽  
pp. 585-588 ◽  
Author(s):  
Fernando Garibay Bonales ◽  
Rigoberto Vera Mendoza

There is a formula (Gelfand's formula) to find the spectral radius of a linear operator defined on a Banach space. That formula does not apply even in normed spaces which are not complete. In this paper we show a formula to find the spectral radius of any linear and compact operatorTdefined on a complete topological vector space, locally convex. We also show an easy way to find a non-trivialT-invariant closed subspace in terms of Minkowski functional.


1986 ◽  
Vol 28 (1) ◽  
pp. 95-112 ◽  
Author(s):  
B. Nagy

In the theory of spectral (and prespectral) operators in a Banach space or in a locally convex topological vector space the countable additivity (in some topology) of a resolution of the identity of the operator is a standing assumption. One might wonder why. Even if one cannot completely agree with the opinion of Diestel and Uhl ([6, p. 32]) stating that “countable additivity [of a set function] is often more of a hindrance than a help”, it might be interesting to study which portions of the theory of (pre)spectral operators and in which form extend to the more general situation described below.


2001 ◽  
Vol 14 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Anwar A. Al-Nayef

The spectrum σ(A) of a continuous linear operator A:E→E defined on a Banach space E, which is contracting with respect to the Hausdorff measure of noncompactness, is investigated.


1972 ◽  
Vol 7 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Joe Howard ◽  
Kenneth Melendez

A locally convex topological vector (LCTV) space E is said to have property V (Dieudonné property) if for every complete separated LCTV space F, every unconditionally converging (weakly completely continuous) operator T: E → F is wsakly compact. First, an investigation of the permanence of property V is given. The permanence of the Dieudonné is analogous. Relationships between property V and the Dieudonné property are then given.


Filomat ◽  
2012 ◽  
Vol 26 (6) ◽  
pp. 1283-1290
Author(s):  
Shirin Hejazian ◽  
Madjid Mirzavaziri ◽  
Omid Zabeti

In this paper, we consider three classes of bounded linear operators on a topological vector space with respect to three different topologies which are introduced by Troitsky. We obtain some properties for the spectral radii of a linear operator on a topological vector space. We find some sufficient conditions for the completeness of these classes of operators. Finally, as a special application, we deduce some sufficient conditions for invertibility of a bounded linear operator.


1974 ◽  
Vol 76 (1) ◽  
pp. 145-152 ◽  
Author(s):  
J. H. Webb

Let E[τ] be a locally convex Hausdorif topological vector space, with a Schauder basis {xi, x′j wherefor each x ∈ E. The partial summation operator Sn, defined byis a linear operator on E, whose definition extends at once to a linear operator mapping (E′)* into E, where (E′)* is the algebraic dual of E′. The dual of Sn is the operator S′n, mapping E* into E′, defined byand 〈Snx, x′〉 = 〈x, S′nx′〉 for each x ∈ (E′)*. It is easy to see that S′nx′ → x′ with respect to the weak topology σ(E′, E) for each x′ ∈ E′.


2002 ◽  
Vol 66 (3) ◽  
pp. 425-441 ◽  
Author(s):  
Christoph Schmoeger

A continuous linear operator on a complex Banach space is said to be paranormal if ‖Tx‖2 ≤ ‖T2x‖ ‖x‖ for all x ∈ X. T is called totally paranormal if T–λ is paranormal for every λ ∈ C. In this paper we investigate the class of totally paranormal operators. We shall see that Weyl's theorem holds for operators in this class. We also show that for totally paranormal operators the Weyl spectrum satisfies the spectral mapping theorem. In Section 5 of this paper we investigate the operator equations eT = eS and eTeS = eSeT for totally paranormal operators T and S.


Sign in / Sign up

Export Citation Format

Share Document