scholarly journals Locally finite varieties of groups arising from Cross varieties: Corrigendum

1971 ◽  
Vol 4 (3) ◽  
pp. 431-432
Author(s):  
Sheila Oates Macdonald

One condition on D was omitted from the statement of Theorem B in the paper [1], namely that (and the corresponding condition in Theorem A). The proof of the theorem clearly requires that this be so and it is not difficult to see that such a D can always be chosen. However, Dr R.M. Bryant has pointed out that not only is the theorem true as it stands, but indeed the conditions can be relaxed slightly to allow D to be any group such that.

1986 ◽  
Vol 100 (2) ◽  
pp. 281-301 ◽  
Author(s):  
Felix Leinen ◽  
Richard E. Phillips

Throughout, p will be a fixed prime, and will denote the class of all locally finite p-groups. For a fixed Abelian p-group A, we letwhere ζ(P) denotes the centre of P. Notice that A is not a class in the usual group-theoretic sense, since it is not closed under isomorphisms.


2016 ◽  
Vol 81 (3) ◽  
pp. 1069-1086
Author(s):  
CHARLES C. PINTER

AbstractThe Stone representation theorem was a milestone for the understanding of Boolean algebras. From Stone’s theorem, every Boolean algebra is representable as a field of sets with a topological structure. By means of this, the structural elements of any Boolean algebra, as well as the relations between them, are represented geometrically and can be clearly visualized. It is no different for cylindric algebras: Suppose that ${\frak A}$ is a cylindric algebra and ${\cal S}$ is the Stone space of its Boolean part. (Among the elements of the Boolean part are the diagonal elements.) It is known that with nothing more than a family of equivalence relations on ${\cal S}$ to represent quantifiers, ${\cal S}$ represents the full cylindric structure just as the Stone space alone represents the Boolean structure. ${\cal S}$ with this structure is called a cylindric space.Many assertions about cylindric algebras can be stated in terms of elementary topological properties of ${\cal S}$. Moreover, points of ${\cal S}$ may be construed as models, and on that construal ${\cal S}$ is called a model space. Certain relations between points on this space turn out to be morphisms between models, and the space of models with these relations hints at the possibility of an “abstract” model theory. With these ideas, a point-set version of model theory is proposed, in the spirit of pointless topology or category theory, in which the central insight is to treat the semantic objects (models) homologously with the corresponding syntactic objects so they reside together in the same space.It is shown that there is a new, purely algebraic way of introducing constants in cylindric algebras, leading to a simplified proof of the representation theorem for locally finite cylindric algebras. Simple rich algebras emerge as homomorphic images of cylindric algebras. The topological version of this theorem is especially interesting: The Stone space of every locally finite cylindric algebra ${\frak A}$ can be partitioned into subspaces which are the Stone spaces of all the simple rich homomorphic images of ${\frak A}$. Each of these images completely determines a model of ${\frak A}$, and all denumerable models of ${\frak A}$ appear in this representation.The Stone space ${\cal S}$ of every cylindric algebra can likewise be partitioned into closed sets which are duals of all the types in ${\frak A}$. This fact yields new insights into miscellaneous results in the model theory of saturated models.


2017 ◽  
Vol 78 (4) ◽  
pp. 555-561 ◽  
Author(s):  
Keith A. Kearnes ◽  
Ágnes Szendrei ◽  
Ross Willard

2005 ◽  
Vol 52 (2-3) ◽  
pp. 119-136 ◽  
Author(s):  
Benoit Larose ◽  
L�szl� Z�dori

2016 ◽  
Vol 76 (3) ◽  
pp. 305-325 ◽  
Author(s):  
Jelena Jovanović ◽  
Petar Marković ◽  
Ralph McKenzie ◽  
Matthew Moore

Sign in / Sign up

Export Citation Format

Share Document