stone space
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wolfgang Rump

Abstract Measure and integration theory for finitely additive measures, including vector-valued measures, is shown to be essentially covered by a class of commutative L-algebras, called measurable algebras. The domain and range of any measure is a commutative L-algebra. Each measurable algebra embeds into its structure group, an abelian group with a compatible lattice order, and each (general) measure extends uniquely to a monotone group homomorphism between the structure groups. On the other hand, any measurable algebra X is shown to be the range of an essentially unique measure on a measurable space, which plays the role of a universal covering. Accordingly, we exhibit a fundamental group of X, with stably closed subgroups corresponding to a special class of measures with X as target. All structure groups of measurable algebras arising in a classical context are archimedean. Therefore, they admit a natural embedding into a group of extended real-valued continuous functions on an extremally disconnected compact space, the Stone space of the measurable algebra. Extending Loomis’ integration theory for finitely additive measures, it is proved that, modulo null functions, each integrable function can be represented by a unique continuous function on the Stone space.


2019 ◽  
Vol 85 (1) ◽  
pp. 109-148
Author(s):  
NICK BEZHANISHVILI ◽  
WESLEY H. HOLLIDAY

AbstractThe standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.


2019 ◽  
Vol 84 (02) ◽  
pp. 833-848
Author(s):  
LEVON HAYKAZYAN

AbstractWe introduce a notion of the space of types in positive model theory based on Stone duality for distributive lattices. We show that this space closely mirrors the Stone space of types in the full first-order model theory with negation (Tarskian model theory). We use this to generalise some classical results on countable models from the Tarskian setting to positive model theory.


2016 ◽  
Vol 81 (3) ◽  
pp. 1069-1086
Author(s):  
CHARLES C. PINTER

AbstractThe Stone representation theorem was a milestone for the understanding of Boolean algebras. From Stone’s theorem, every Boolean algebra is representable as a field of sets with a topological structure. By means of this, the structural elements of any Boolean algebra, as well as the relations between them, are represented geometrically and can be clearly visualized. It is no different for cylindric algebras: Suppose that ${\frak A}$ is a cylindric algebra and ${\cal S}$ is the Stone space of its Boolean part. (Among the elements of the Boolean part are the diagonal elements.) It is known that with nothing more than a family of equivalence relations on ${\cal S}$ to represent quantifiers, ${\cal S}$ represents the full cylindric structure just as the Stone space alone represents the Boolean structure. ${\cal S}$ with this structure is called a cylindric space.Many assertions about cylindric algebras can be stated in terms of elementary topological properties of ${\cal S}$. Moreover, points of ${\cal S}$ may be construed as models, and on that construal ${\cal S}$ is called a model space. Certain relations between points on this space turn out to be morphisms between models, and the space of models with these relations hints at the possibility of an “abstract” model theory. With these ideas, a point-set version of model theory is proposed, in the spirit of pointless topology or category theory, in which the central insight is to treat the semantic objects (models) homologously with the corresponding syntactic objects so they reside together in the same space.It is shown that there is a new, purely algebraic way of introducing constants in cylindric algebras, leading to a simplified proof of the representation theorem for locally finite cylindric algebras. Simple rich algebras emerge as homomorphic images of cylindric algebras. The topological version of this theorem is especially interesting: The Stone space of every locally finite cylindric algebra ${\frak A}$ can be partitioned into subspaces which are the Stone spaces of all the simple rich homomorphic images of ${\frak A}$. Each of these images completely determines a model of ${\frak A}$, and all denumerable models of ${\frak A}$ appear in this representation.The Stone space ${\cal S}$ of every cylindric algebra can likewise be partitioned into closed sets which are duals of all the types in ${\frak A}$. This fact yields new insights into miscellaneous results in the model theory of saturated models.


2013 ◽  
Vol 160 (2) ◽  
pp. 273-279
Author(s):  
Jorge L. Bruno ◽  
Aisling E. McCluskey

Sign in / Sign up

Export Citation Format

Share Document