STONE SPACE OF CYLINDRIC ALGEBRAS AND TOPOLOGICAL MODEL SPACES

2016 ◽  
Vol 81 (3) ◽  
pp. 1069-1086
Author(s):  
CHARLES C. PINTER

AbstractThe Stone representation theorem was a milestone for the understanding of Boolean algebras. From Stone’s theorem, every Boolean algebra is representable as a field of sets with a topological structure. By means of this, the structural elements of any Boolean algebra, as well as the relations between them, are represented geometrically and can be clearly visualized. It is no different for cylindric algebras: Suppose that ${\frak A}$ is a cylindric algebra and ${\cal S}$ is the Stone space of its Boolean part. (Among the elements of the Boolean part are the diagonal elements.) It is known that with nothing more than a family of equivalence relations on ${\cal S}$ to represent quantifiers, ${\cal S}$ represents the full cylindric structure just as the Stone space alone represents the Boolean structure. ${\cal S}$ with this structure is called a cylindric space.Many assertions about cylindric algebras can be stated in terms of elementary topological properties of ${\cal S}$. Moreover, points of ${\cal S}$ may be construed as models, and on that construal ${\cal S}$ is called a model space. Certain relations between points on this space turn out to be morphisms between models, and the space of models with these relations hints at the possibility of an “abstract” model theory. With these ideas, a point-set version of model theory is proposed, in the spirit of pointless topology or category theory, in which the central insight is to treat the semantic objects (models) homologously with the corresponding syntactic objects so they reside together in the same space.It is shown that there is a new, purely algebraic way of introducing constants in cylindric algebras, leading to a simplified proof of the representation theorem for locally finite cylindric algebras. Simple rich algebras emerge as homomorphic images of cylindric algebras. The topological version of this theorem is especially interesting: The Stone space of every locally finite cylindric algebra ${\frak A}$ can be partitioned into subspaces which are the Stone spaces of all the simple rich homomorphic images of ${\frak A}$. Each of these images completely determines a model of ${\frak A}$, and all denumerable models of ${\frak A}$ appear in this representation.The Stone space ${\cal S}$ of every cylindric algebra can likewise be partitioned into closed sets which are duals of all the types in ${\frak A}$. This fact yields new insights into miscellaneous results in the model theory of saturated models.

1969 ◽  
Vol 34 (3) ◽  
pp. 331-343 ◽  
Author(s):  
J. Donald Monk

Cylindric algebras were introduced by Alfred Tarski about 1952 to provide an algebraic analysis of (first-order) predicate logic. With each cylindric algebra one can, in fact, associate a certain, in general infinitary, predicate logic; for locally finite cylindric algebras of infinite dimension the associated predicate logics are finitary. As with Boolean algebras and sentential logic, the algebraic counterpart of completeness is representability. Tarski proved the fundamental result that every locally finite cylindric algebra of infinite dimension is representable.


1985 ◽  
Vol 50 (4) ◽  
pp. 865-873
Author(s):  
H. Andréka ◽  
I. Németi

The theory of cylindric algebras (CA's) is the algebraic theory of first order logics. Several ideas about logic are easier to formulate in the frame of CA-theory. Such are e.g. some concepts of abstract model theory (cf. [1] and [10]–[12]) as well as ideas about relationships between several axiomatic theories of different similarity types (cf. [4] and [10]). In contrast with the relationship between Boolean algebras and classical propositional logic, CA's correspond not only to classical first order logic but also to several other ones. Hence CA-theoretic results contain more information than their counterparts in first order logic. For more about this see [1], [3], [5], [9], [10] and [12].Here we shall use the notation and concepts of the monographs Henkin-Monk-Tarski [7] and [8]. ω denotes the set of natural numbers. CAα denotes the class of all cylindric algebras of dimension α; by “a CAα” we shall understand an element of the class CAα. The class Dcα ⊆ CAα was defined in [7]. Note that Dcα = 0 for α ∈ ω. The classes Wsα, and Csα were defined in 1.1.1 of [8], p. 4. They are called the classes of all weak cylindric set algebras, regular cylindric set algebras and cylindric set algebras respectively. It is proved in [8] (I.7.13, I.1.9) that ⊆ CAα. (These inclusions are proper by 7.3.7, 1.4.3 and 1.5.3 of [8].)It was proved in 2.3.22 and 2.3.23 of [7] that every simple, finitely generated Dcα is generated by a single element. This is the algebraic counterpart of a property of first order logics (cf. 2.3.23 of [7]). The question arose: for which simple CAα's does “finitely generated” imply “generated by a single element” (see p. 291 and Problem 2.3 in [7]). In terms of abstract model theory this amounts to asking the question: For which logics does the property described in 2.3.23 of [7] hold? This property is roughly the following. In any maximal theory any finite set of concepts is definable in terms of a single concept. The connection with CA-theory is that maximal theories correspond to simple CA's (the elements of which are the concepts of the original logic) and definability corresponds to generation.


1986 ◽  
Vol 100 (2) ◽  
pp. 281-301 ◽  
Author(s):  
Felix Leinen ◽  
Richard E. Phillips

Throughout, p will be a fixed prime, and will denote the class of all locally finite p-groups. For a fixed Abelian p-group A, we letwhere ζ(P) denotes the centre of P. Notice that A is not a class in the usual group-theoretic sense, since it is not closed under isomorphisms.


2019 ◽  
Vol 85 (1) ◽  
pp. 109-148
Author(s):  
NICK BEZHANISHVILI ◽  
WESLEY H. HOLLIDAY

AbstractThe standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.


2000 ◽  
Vol 65 (2) ◽  
pp. 857-884 ◽  
Author(s):  
Gábor Sági

AbstractHere we investigate the classes of representable directed cylindric algebras of dimension α introduced by Németi [12]. can be seen in two different ways: first, as an algebraic counterpart of higher order logics and second, as a cylindric algebraic analogue of Quasi-Projective Relation Algebras. We will give a new, “purely cylindric algebraic” proof for the following theorems of Németi: (i) is a finitely axiomatizable variety whenever α ≥ 3 is finite and (ii) one can obtain a strong representation theorem for if one chooses an appropriate (non-well-founded) set theory as foundation of mathematics. These results provide a purely cylindric algebraic solution for the Finitization Problem (in the sense of [11]) in some non-well-founded set theories.


1992 ◽  
Vol 39 (1) ◽  
pp. 95-146 ◽  
Author(s):  
Joseph A. Goguen ◽  
Rod M. Burstall

1962 ◽  
Vol 5 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Günter Bruns

Let B be a Boolean algebra and let ℳ and n be two systems of subsets of B, both containing all finite subsets of B. Let us assume further that the join ∨M of every set M∊ℳ and the meet ∧N of every set N∊n exist. Several authors have treated the question under which conditions there exists an isomorphism φ between B and a field δ of sets, satisfying the conditions:


10.37236/115 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Norbert Seifter ◽  
Vladimir I. Trofimov

In this paper we investigate reachability relations on the vertices of digraphs. If $W$ is a walk in a digraph $D$, then the height of $W$ is equal to the number of edges traversed in the direction coinciding with their orientation, minus the number of edges traversed opposite to their orientation. Two vertices $u,v\in V(D)$ are $R_{a,b}$-related if there exists a walk of height $0$ between $u$ and $v$ such that the height of every subwalk of $W$, starting at $u$, is contained in the interval $[a,b]$, where $a$ ia a non-positive integer or $a=-\infty$ and $b$ is a non-negative integer or $b=\infty$. Of course the relations $R_{a,b}$ are equivalence relations on $V(D)$. Factorising digraphs by $R_{a,\infty}$ and $R_{-\infty,b}$, respectively, we can only obtain a few different digraphs. Depending upon these factor graphs with respect to $R_{-\infty,b}$ and $R_{a,\infty}$ it is possible to define five different "basic relation-properties" for $R_{-\infty,b}$ and $R_{a,\infty}$, respectively. Besides proving general properties of the relations $R_{a,b}$, we investigate the question which of the "basic relation-properties" with respect to $R_{-\infty,b}$ and $R_{a,\infty}$ can occur simultaneously in locally finite connected transitive digraphs. Furthermore we investigate these properties for some particular subclasses of locally finite connected transitive digraphs such as Cayley digraphs, digraphs with one, with two or with infinitely many ends, digraphs containing or not containing certain directed subtrees, and highly arc transitive digraphs.


1995 ◽  
Vol 5 (1) ◽  
pp. 9-40 ◽  
Author(s):  
Răzvan Diaconescu

Equational deduction is generalised within a category-based abstract model theory framework, and proved complete under a hypothesis of quantifier projectivity, using a semantic treatment that regards quantifiers as models rather than variables, and valuations as model morphisms rather than functions. Applications include many- and order-sorted (conditional) equational logics, Horn clause logic, equational deduction modulo a theory, constraint logics, and more, as well as any possible combination among them. In the cases of equational deduction modulo a theory and of constraint logic the completeness result is new. One important consequence is an abstract version of Herbrand's Theorem, which provides an abstract model theoretic foundation for equational and constraint logic programming.


2018 ◽  
Vol 83 (1) ◽  
pp. 326-348 ◽  
Author(s):  
RUSSELL MILLER ◽  
BJORN POONEN ◽  
HANS SCHOUTENS ◽  
ALEXANDRA SHLAPENTOKH

AbstractFried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors.


Sign in / Sign up

Export Citation Format

Share Document