scholarly journals POINTWISE CONVERGENCE AND SEMIGROUPS ACTING ON VECTOR-VALUED FUNCTIONS

2011 ◽  
Vol 84 (1) ◽  
pp. 44-48 ◽  
Author(s):  
MICHAEL G. COWLING ◽  
MICHAEL LEINERT

AbstractA submarkovian C0 semigroup (Tt)t∈ℝ+ acting on the scale of complex-valued functions Lp(X,ℂ) extends to a semigroup of operators on the scale of vector-valued function spaces Lp(X,E), when E is a Banach space. It is known that, if f∈Lp(X,ℂ), where 1<p<∞, then Ttf→f pointwise almost everywhere. We show that the same holds when f∈Lp(X,E) .

1996 ◽  
Vol 39 (3) ◽  
pp. 485-490 ◽  
Author(s):  
N. H. Asmar ◽  
B. P. Kelly ◽  
S. Montgomery-Smith

A Banach space X is called an HT space if the Hilbert transform is bounded from Lp(X) into Lp(X), where 1 < p < ∞. We introduce the notion of an ACF Banach space, that is, a Banach space X for which we have an abstract M. Riesz Theorem for conjugate functions in Lp(X), 1 < p < ∞. Berkson, Gillespie and Muhly [5] showed that X ∈ HT ⇒ X ∈ ACF. In this note, we will show that X ∈ ACF ⇒ X ∈ UMD, thus providing a new proof of Bourgain's result X ∈ HT ⇒ X ∈ UMD.


1989 ◽  
Vol 41 (4) ◽  
pp. 659-675 ◽  
Author(s):  
A. Kamińska ◽  
B. Turett

In this paper, Köthe spaces of vector-valued functions are considered. These spaces, which are generalizations of both the Lebesgue-Bochner and Orlicz-Bochner spaces, have been studied by several people (e.g., see [1], [8]). Perhaps the earliest paper concerning the rotundity of such Köthe space is due to I. Halperin [8]. In his paper, Halperin proved that the function spaces E(X) is uniformly rotund exactly when both the Köthe space E and the Banach space X are uniformly rotund; this generalized the analogous result, due to M. M. Day [4], concerning Lebesgue-Bochner spaces. In [20], M. Smith and B. Turett showed that many properties akin to uniform rotundity lift from X to the Lebesgue-Bochner space LP(X) when 1 < p < ∞. A survey of rotundity notions in Lebesgue-Bochner function and sequence spaces can be found in [19].


1987 ◽  
Vol 101 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Fernando Bombal

The purpose of this paper is to characterize the Orlicz vector-valued function spaces containing a copy or a complemented copy of l1. Pisier proved in [13] that if a Banach space E contains no copy of l1, then the space Lp(S, Σ, μ, E) does not contain it either, for 1 < p < ∞. We extend this result to the case of Orlicz vector valued function spaces, by reducing the problem to the situation considered by Pisier. Next, we pass to study the problem of embedding l1 as a complemented subspace of LΦ(E). We obtain a complete characterization when E is a Banach lattice and only partial results in case of a general Banach space. We use here in a crucial way a result of E. Saab and P. Saab concerning the embedding of l1 as a complemented subspace of C(K, E), the Banach space of all the E-valued continuous functions on the compact Hausdorff space K (see [14]). Finally, we use these results to characterize several classes of Banach spaces for which LΦ(E) has some Banach space properties, namely the reciprocal Dunford-Pettis property and Pelczyński's V property.


1988 ◽  
Vol 40 (3) ◽  
pp. 610-632 ◽  
Author(s):  
M. A. Akcoglu ◽  
L. Sucheston

Let 1 < p < ∞ and let Lp be the usual Banach Space of complex valued functions on a σ-finite measure space. Let (Tn), n ≧ 1, be a sequence of positive linear contractions on Lp. Hence and , where is the part of Lp that consists of non-negative Lp functions. The adjoint of Tn is denoted by which is a positive linear contraction of Lq with q = p/(p — 1).Our purpose in this paper is to show that the alternating sequences associated with (Tn), as introduced in [2], converge almost everywhere. Complete definitions will be given later. When applied to a non negative function, however, this result is reduced to the following theorem.(1.1) THEOREM. If (Tn) is a sequence of positive contractions of Lp then (1.2) exists a.e. for all.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Feng Liu

Abstract In this note we study the rough singular integral $$ T_{\varOmega }f(x)=\mathrm{p.v.} \int _{\mathbb{R}^{n}}f(x-y)\frac{\varOmega (y/ \vert y \vert )}{ \vert y \vert ^{n}}\,dy, $$ T Ω f ( x ) = p . v . ∫ R n f ( x − y ) Ω ( y / | y | ) | y | n d y , where $n\geq 2$ n ≥ 2 and Ω is a function in $L\log L(\mathrm{S} ^{n-1})$ L log L ( S n − 1 ) with vanishing integral. We prove that $T_{\varOmega }$ T Ω is bounded on the mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}( \mathbb{R}^{n})$ L | x | p L θ p ˜ ( R n ) , on the vector-valued mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}(\mathbb{R}^{n},\ell ^{\tilde{p}})$ L | x | p L θ p ˜ ( R n , ℓ p ˜ ) and on the vector-valued function spaces $L^{p}(\mathbb{R}^{n}, \ell ^{\tilde{p}})$ L p ( R n , ℓ p ˜ ) if $1<\tilde{p}\leq p<\tilde{p}n/(n-1)$ 1 < p ˜ ≤ p < p ˜ n / ( n − 1 ) or $\tilde{p}n/(\tilde{p}+n-1)< p\leq \tilde{p}<\infty $ p ˜ n / ( p ˜ + n − 1 ) < p ≤ p ˜ < ∞ . The same conclusions hold for the well-known Riesz transforms and directional Hilbert transforms. It should be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.


Sign in / Sign up

Export Citation Format

Share Document