scholarly journals A note on UMD spaces and transference in vector-valued function spaces

1996 ◽  
Vol 39 (3) ◽  
pp. 485-490 ◽  
Author(s):  
N. H. Asmar ◽  
B. P. Kelly ◽  
S. Montgomery-Smith

A Banach space X is called an HT space if the Hilbert transform is bounded from Lp(X) into Lp(X), where 1 < p < ∞. We introduce the notion of an ACF Banach space, that is, a Banach space X for which we have an abstract M. Riesz Theorem for conjugate functions in Lp(X), 1 < p < ∞. Berkson, Gillespie and Muhly [5] showed that X ∈ HT ⇒ X ∈ ACF. In this note, we will show that X ∈ ACF ⇒ X ∈ UMD, thus providing a new proof of Bourgain's result X ∈ HT ⇒ X ∈ UMD.

2011 ◽  
Vol 84 (1) ◽  
pp. 44-48 ◽  
Author(s):  
MICHAEL G. COWLING ◽  
MICHAEL LEINERT

AbstractA submarkovian C0 semigroup (Tt)t∈ℝ+ acting on the scale of complex-valued functions Lp(X,ℂ) extends to a semigroup of operators on the scale of vector-valued function spaces Lp(X,E), when E is a Banach space. It is known that, if f∈Lp(X,ℂ), where 1<p<∞, then Ttf→f pointwise almost everywhere. We show that the same holds when f∈Lp(X,E) .


1987 ◽  
Vol 101 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Fernando Bombal

The purpose of this paper is to characterize the Orlicz vector-valued function spaces containing a copy or a complemented copy of l1. Pisier proved in [13] that if a Banach space E contains no copy of l1, then the space Lp(S, Σ, μ, E) does not contain it either, for 1 < p < ∞. We extend this result to the case of Orlicz vector valued function spaces, by reducing the problem to the situation considered by Pisier. Next, we pass to study the problem of embedding l1 as a complemented subspace of LΦ(E). We obtain a complete characterization when E is a Banach lattice and only partial results in case of a general Banach space. We use here in a crucial way a result of E. Saab and P. Saab concerning the embedding of l1 as a complemented subspace of C(K, E), the Banach space of all the E-valued continuous functions on the compact Hausdorff space K (see [14]). Finally, we use these results to characterize several classes of Banach spaces for which LΦ(E) has some Banach space properties, namely the reciprocal Dunford-Pettis property and Pelczyński's V property.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Feng Liu

Abstract In this note we study the rough singular integral $$ T_{\varOmega }f(x)=\mathrm{p.v.} \int _{\mathbb{R}^{n}}f(x-y)\frac{\varOmega (y/ \vert y \vert )}{ \vert y \vert ^{n}}\,dy, $$ T Ω f ( x ) = p . v . ∫ R n f ( x − y ) Ω ( y / | y | ) | y | n d y , where $n\geq 2$ n ≥ 2 and Ω is a function in $L\log L(\mathrm{S} ^{n-1})$ L log L ( S n − 1 ) with vanishing integral. We prove that $T_{\varOmega }$ T Ω is bounded on the mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}( \mathbb{R}^{n})$ L | x | p L θ p ˜ ( R n ) , on the vector-valued mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}(\mathbb{R}^{n},\ell ^{\tilde{p}})$ L | x | p L θ p ˜ ( R n , ℓ p ˜ ) and on the vector-valued function spaces $L^{p}(\mathbb{R}^{n}, \ell ^{\tilde{p}})$ L p ( R n , ℓ p ˜ ) if $1<\tilde{p}\leq p<\tilde{p}n/(n-1)$ 1 < p ˜ ≤ p < p ˜ n / ( n − 1 ) or $\tilde{p}n/(\tilde{p}+n-1)< p\leq \tilde{p}<\infty $ p ˜ n / ( p ˜ + n − 1 ) < p ≤ p ˜ < ∞ . The same conclusions hold for the well-known Riesz transforms and directional Hilbert transforms. It should be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Feng Liu ◽  
Fangfang Xu

In this note we establish certain weighted estimates for a class of maximal functions with rough kernels along “polynomial curves” on Rn. As applications, we obtain the bounds of the above operators on the mixed radial-angular spaces, on the vector-valued mixed radial-angular spaces, and on the vector-valued function spaces. Particularly, the above bounds are independent of the coefficients of the polynomials in the definition of the operators.


2012 ◽  
Vol 389 (2) ◽  
pp. 1173-1190 ◽  
Author(s):  
Titarii Wootijirattikal ◽  
Sing-Cheong Ong ◽  
Jitti Rakbud

Sign in / Sign up

Export Citation Format

Share Document