scholarly journals SPACELIKE CAPILLARY SURFACES IN THE LORENTZ–MINKOWSKI SPACE

2011 ◽  
Vol 84 (3) ◽  
pp. 362-371
Author(s):  
JUNCHEOL PYO ◽  
KEOMKYO SEO

AbstractFor a compact spacelike constant mean curvature surface with nonempty boundary in the three-dimensional Lorentz–Minkowski space, we introduce a rotation index of the lines of curvature at the boundary umbilical point, which was developed by Choe [‘Sufficient conditions for constant mean curvature surfaces to be round’, Math. Ann.323(1) (2002), 143–156]. Using the concept of the rotation index at the interior and boundary umbilical points and applying the Poincaré–Hopf index formula, we prove that a compact immersed spacelike disk type capillary surface with less than four vertices in a domain of $\Bbb L^3$ bounded by (spacelike or timelike) totally umbilical surfaces is part of a (spacelike) plane or a hyperbolic plane. Moreover, we prove that the only immersed spacelike disk type capillary surface inside a de Sitter surface in $\Bbb L^3$ is part of (spacelike) plane or a hyperbolic plane.

Author(s):  
A. J. Goddard

AbstractBernstein's theorem states that the only complete minimal graphs in R3 are the hyperplanes. We shall produce evidence in favour of some conjectural generalizations of this theorem for the cases of spacelike hypersurfaces of constant mean curvature in Minkowski space and in de Sitter space. The results suggest that the class of asymptotically simple space-times admitting a complete spacelike hypersurface of constant mean curvature may well be considerably smaller than the general class of asymptotically simple space-times.


2002 ◽  
Vol 74 (3) ◽  
pp. 371-377 ◽  
Author(s):  
PEDRO A. HINOJOSA

In this work we will deal with disc type surfaces of constant mean curvature in the three dimensional hyperbolic space which are given as graphs of smooth functions over planar domains. From the various types of graphs that could be defined in the hyperbolic space we consider in particular the horizontal and the geodesic graphs. We proved that if the mean curvature is constant, then such graphs are equivalent in the following sense: suppose that M is a constant mean curvature surface in the 3-hyperbolic space such that M is a geodesic graph of a function rho that is zero at the boundary, then there exist a smooth function f that also vanishes at the boundary, such that M is a horizontal graph of f. Moreover, the reciprocal is also true.


1995 ◽  
Vol 10 (03) ◽  
pp. 337-364 ◽  
Author(s):  
MICHAEL S. ODY ◽  
LEWIS H. RYDER

It is shown that time-independent solutions to the (2+1)-dimensional nonlinear O(3) sigma model may be placed in correspondence with surfaces of constant mean curvature in three-dimensional Euclidean space. The tools required to establish this correspondence are provided by the classical differential geometry of surfaces. A constant-mean-curvature surface induces a solution to the O(3) model through the identification of the Gauss map, or normal vector, of the surface with the field vector of the sigma model. Some explicit solutions, including the solitons and antisolitons discovered by Belavin and Polyakov, and a more general solution due to Purkait and Ray, are considered and the surfaces giving rise to them are found explicitly. It is seen, for example, that the Belavin-Polyakov solutions are induced by the Gauss maps of surfaces which are conformal to their spherical images, i.e. spheres and minimal surfaces, and that the Purkait-Ray solution corresponds to the family of constant-mean-curvature helicoids first studied by do Carmo and Dajczer in 1982. A generalization of this method to include time dependence may shed new light on the role of the Hopf invariant in this model.


Author(s):  
Luca Guzzardi ◽  
Epifanio G Virga

We propose three integral criteria that must be satisfied by all closed surfaces with constant mean curvature immersed in the three-dimensional Euclidean space. These criteria are integral identities that follow from requiring the second variation of the area functional to be invariant under rigid displacements. We obtain from them a new proof of the old result by Delaunay, to the effect that the sphere is the only closed axis-symmetric surface.


Sign in / Sign up

Export Citation Format

Share Document