scholarly journals ON WEAKLY s-PERMUTABLY EMBEDDED SUBGROUPS OF FINITE GROUPS II

2012 ◽  
Vol 86 (1) ◽  
pp. 41-49 ◽  
Author(s):  
SHOUHONG QIAO ◽  
YANMING WANG

AbstractA subgroup H is called weakly s-permutably embedded in G if there are a subnormal subgroup T of G and an s-permutably embedded subgroup Hse of G contained in H such that G=HT and H∩T≤Hse. In this note, we study the influence of the weakly s-permutably embedded property of subgroups on the structure of G, and obtain the following theorem. Let ℱ be a saturated formation containing 𝒰, the class of all supersolvable groups, and G a group with E as a normal subgroup of G such that G/E∈ℱ. Suppose that P has a subgroup D such that 1<∣D∣<∣P∣ and all subgroups H of P with order ∣H∣=∣D∣ are s-permutably embedded in G. Also, when p=2 and ∣D∣=2 , we suppose that each cyclic subgroup of P of order four is weakly s-permutably embedded in G. Then G∈ℱ.

2008 ◽  
Vol 01 (03) ◽  
pp. 369-382
Author(s):  
Nataliya V. Hutsko ◽  
Vladimir O. Lukyanenko ◽  
Alexander N. Skiba

Let G be a finite group and H a subgroup of G. Then H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. Then we say that H is nearly S-quasinormal in G if G has an S-quasinormal subgroup T such that HT = G and T ∩ H ≤ HsG. Our main result here is the following theorem. Let [Formula: see text] be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that [Formula: see text]. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) having no supersoluble supplement in G are nearly S-quasinormal in G. Then [Formula: see text].


2019 ◽  
Vol 69 (4) ◽  
pp. 763-772
Author(s):  
Chenchen Cao ◽  
Venus Amjid ◽  
Chi Zhang

Abstract Let σ = {σi ∣i ∈ I} be some partition of the set of all primes ℙ, G be a finite group and σ(G) = {σi∣σi ∩ π(G) ≠ ∅}. G is said to be σ-primary if ∣σ(G)∣ ≤ 1. A subgroup H of G is said to be σ-subnormal in G if there exists a subgroup chain H = H0 ≤ H1 ≤ … ≤ Ht = G such that either Hi−1 is normal in Hi or Hi/(Hi−1)Hi is σ-primary for all i = 1, …, t. A set 𝓗 of subgroups of G is said to be a complete Hall σ-set of G if every non-identity member of 𝓗 is a Hall σi-subgroup of G for some i and 𝓗 contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). Let 𝓗 be a complete Hall σ-set of G. A subgroup H of G is said to be 𝓗-permutable if HA = AH for all A ∈ 𝓗. We say that a subgroup H of G is weakly 𝓗-permutable in G if there exists a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ H𝓗, where H𝓗 is the subgroup of H generated by all those subgroups of H which are 𝓗-permutable. By using the weakly 𝓗-permutable subgroups, we establish some new criteria for a group G to be σ-soluble and supersoluble, and we also give the conditions under which a normal subgroup of G is hypercyclically embedded.


Author(s):  
Viktoria S. Zakrevskaya

Let σ = {σi|i ∈ I } be a partition of the set of all primes ℙ and G be a finite group. A set ℋ  of subgroups of G is said to be a complete Hall σ-set of G if every member ≠1 of ℋ  is a Hall σi-subgroup of G for some i ∈ I and ℋ contains exactly one Hall σi-subgroup of G for every i such that σi ⌒ π(G)  ≠ ∅.  A group is said to be σ-primary if it is a finite σi-group for some i. A subgroup A of G is said to be: σ-permutable in G if G possesses a complete Hall σ-set ℋ  such that AH x = H  xA for all H ∈ ℋ  and all x ∈ G; σ-subnormal in G if there is a subgroup chain A = A0 ≤ A1 ≤ … ≤ At = G such that either Ai − 1 ⊴ Ai or Ai /(Ai − 1)Ai is σ-primary for all i = 1, …, t; 𝔄-normal in G if every chief factor of G between AG and AG is cyclic. We say that a subgroup H of G is: (i) partially σ-permutable in G if there are a 𝔄-normal subgroup A and a σ-permutable subgroup B of G such that H = < A, B >; (ii) (𝔄, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ S ≤ H. We study G assuming that some subgroups of G are partially σ-permutable or (𝔄, σ)-embedded in G. Some known results are generalised.


2012 ◽  
Vol 49 (3) ◽  
pp. 390-405
Author(s):  
Wenbin Guo ◽  
Alexander Skiba

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G and HsG the intersection of all S-quasinormal subgroups of G containing H. The symbol |G|p denotes the order of a Sylow p-subgroup of G. We prove the followingTheorem A. Let G be a finite group and p a prime dividing |G|. Then G is p-supersoluble if and only if for every cyclic subgroup H ofḠ (G) of prime order or order 4 (if p = 2), Ḡhas a normal subgroup T such thatHsḠandH∩T=HsḠ∩T.Theorem B. A soluble finite group G is p-supersoluble if and only if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that EsG = ET and |E ∩ T|p = |EsG ∩ T|p.Theorem C. A finite group G is p-soluble if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T such that EsG = ET and |E ∩ Tp = |EsG ∩ T|p.


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


1994 ◽  
Vol 36 (2) ◽  
pp. 241-247 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

Throughout the paper we consider only finite groups.J. C. Beidleman and H. Smith [3] have proposed the following question: “If G is a group and Ha subnormal subgroup of G containing Φ(G), the Frattini subgroup of G, such that H/Φ(G)is supersoluble, is H necessarily supersoluble? “In this paper, we give not only an affirmative answer to this question but also we see that the above result still holds if supersoluble is replaced by any saturated formation containing the class of all nilpotent groups.


2013 ◽  
Vol 20 (03) ◽  
pp. 421-426 ◽  
Author(s):  
Zhencai Shen ◽  
Ni Du

Let [Formula: see text] be a saturated formation containing [Formula: see text], and G be a finite group. Li etc. proposed a problem: whether there is a normality such that the following two statements are equivalent: (i) [Formula: see text]. (ii) There exists a normal subgroup H of G such that [Formula: see text] and for each Sylow subgroup P of F*(H), every member in some [Formula: see text] satisfies the above normality in G. In this paper, we find a normality satisfying the above problem. Moreover, by using the concept of ℋ-subgroups, we obtain other results about the influence of the members of some fixed [Formula: see text] on the structure of G.


2015 ◽  
Vol 14 (05) ◽  
pp. 1550062 ◽  
Author(s):  
A. A. Heliel ◽  
M. M. Al-Shomrani ◽  
T. M. Al-Gafri

Let ℨ be a complete set of Sylow subgroups of a finite group G, that is, for each prime p dividing the order of G, ℨ contains exactly one and only one Sylow p-subgroup of G. A subgroup H of G is said to be ℨ-permutable of G if H permutes with every member of ℨ. A subgroup H of G is said to be a weakly ℨ-permutable subgroup of G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K ≤ Hℨ, where Hℨ is the subgroup of H generated by all those subgroups of H which are ℨ-permutable subgroups of G. In this paper, we prove that if p is the smallest prime dividing the order of G and the maximal subgroups of Gp ∈ ℨ are weakly ℨ-permutable subgroups of G, then G is p-nilpotent. Moreover, we prove that if 𝔉 is a saturated formation containing the class of all supersolvable groups, then G ∈ 𝔉 iff there is a solvable normal subgroup H in G such that G/H ∈ 𝔉 and the maximal subgroups of the Sylow subgroups of the Fitting subgroup F(H) are weakly ℨ-permutable subgroups of G. These two results generalize and unify several results in the literature.


Author(s):  
Yaxin Gao ◽  
Xianhua Li

Let [Formula: see text] be a finite group and [Formula: see text] a subgroup of [Formula: see text]. [Formula: see text] is said to be [Formula: see text]-embedded in [Formula: see text] if there exists a normal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] is a Hall subgroup of [Formula: see text] and [Formula: see text], where [Formula: see text] is the largest [Formula: see text]-semipermutable subgroup of [Formula: see text] contained in [Formula: see text]. In this paper, we give some new characterizations of [Formula: see text]-nilpotent and supersolvable groups by using [Formula: see text]-embedded subgroups. Some known results are generalized.


1996 ◽  
Vol 54 (3) ◽  
pp. 369-372 ◽  
Author(s):  
R.B.J.T. Allenby

We prove that a polygonal product of polycyclic by finite groups amalgamating normal subgroups, with trivial mutual intersections, is cyclic subgroup separable. Because of a recent example (stated below) of the author this substantial improvement on a recent theorem of Kim is essentially best possible.


Sign in / Sign up

Export Citation Format

Share Document