scholarly journals On 𝓕-subnormal subgroups and Frattini-like subgroups of a finite group

1994 ◽  
Vol 36 (2) ◽  
pp. 241-247 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

Throughout the paper we consider only finite groups.J. C. Beidleman and H. Smith [3] have proposed the following question: “If G is a group and Ha subnormal subgroup of G containing Φ(G), the Frattini subgroup of G, such that H/Φ(G)is supersoluble, is H necessarily supersoluble? “In this paper, we give not only an affirmative answer to this question but also we see that the above result still holds if supersoluble is replaced by any saturated formation containing the class of all nilpotent groups.

Author(s):  
Ruslan V. Borodich

In the work of Beidleman and Smith [On Frattini-like subgroups, Glasgow Math. J. 35 (1993) 95–98], the following question was raised: “If [Formula: see text] is a subnormal subgroup of a finite group [Formula: see text] containing [Formula: see text], then whether the supersolvability of [Formula: see text] follows the supersolvability of [Formula: see text]”. This problem was considered in works of Selkin [Maximal Subgroups in the Theory of Classes of Finite Groups (Belaruskaya, Navuka, 1997)], Skiba [On the intersection of all maximal [Formula: see text]-subgroups of a finite group, Prob. Phys. Math. Tech. 3(4) (2010) 56–62], Ballester-Bolinches [On [Formula: see text]-subnormal subgroups and Frattini-like subgroups of a finite group, Glasgow Math. J. 36 (1994) 241–247] and many other authors (see monograph [Maximal Subgroups in the Theory of Classes of Finite Groups (Belaruskaya, Navuka, 1997)]). In this paper, we give the answer to the more general question: “Let [Formula: see text] be a local formation. If [Formula: see text] is a subnormal subgroup of a group [Formula: see text], then in what case [Formula: see text] will follow from [Formula: see text]”.


2014 ◽  
Vol 56 (3) ◽  
pp. 691-703 ◽  
Author(s):  
A. BALLESTER-BOLINCHES ◽  
J. C. BEIDLEMAN ◽  
A. D. FELDMAN ◽  
M. F. RAGLAND

AbstractFor a formation $\mathfrak F$, a subgroup M of a finite group G is said to be $\mathfrak F$-pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug〉$\mathfrak F$ such that Ux = Ug. Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$-normal in G if G/CoreG(M) belongs to $\mathfrak F$. A subgroup U of a finite group G is called K-$\mathfrak F$-subnormal in G if either U = G or there exist subgroups U = U0 ≤ U1 ≤ . . . ≤ Un = G such that Ui–1 is either normal or $\mathfrak F$-normal in Ui, for i = 1,2, …, n. We call a finite group G an $fT_{\mathfrak F}$-group if every K-$\mathfrak F$-subnormal subgroup of G is in f(G). In this paper, we analyse for certain formations $\mathfrak F$ the structure of $fT_{\mathfrak F}$-groups. We pay special attention to the $\mathfrak F$-pronormal subgroups in this analysis.


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


2001 ◽  
Vol 44 (2) ◽  
pp. 417-423
Author(s):  
A. Ballester-Bolinches ◽  
L. M. Ezquerro

AbstractFollowing the theory of operators created by Wielandt, we ask for what kind of formations $\mathfrak{F}$ and for what kind of subnormal subgroups $U$ and $V$ of a finite group $G$ we have that the $\mathfrak{F}$-residual of the subgroup generated by two subnormal subgroups of a group is the subgroup generated by the $\mathfrak{F}$-residuals of the subgroups.In this paper we provide an answer whenever $U$ is quasinilpotent and $\mathfrak{F}$ is either a Fitting formation or a saturated formation closed for quasinilpotent subnormal subgroups.AMS 2000 Mathematics subject classification: Primary 20F17; 20D35


Author(s):  
Yuqing Sun ◽  
Jiakuan Lu ◽  
Wei Meng

In this paper, we prove that if every non-abelian self-centralizing subgroup of a finite group [Formula: see text] is a TI-subgroup or a subnormal subgroup of [Formula: see text], then every non-abelian subgroup of [Formula: see text] must be subnormal in [Formula: see text].


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
Qingjun Kong

It is well known that the Frattini subgroups of any finite groups are nilpotent. If a finite group is not nilpotent, it is not the Frattini subgroup of a finite group. In this paper, we mainly discuss what kind of finite nilpotent groups cannot be the Frattini subgroup of some finite groups and give some results. Moreover, we generalize Hobby’s Theorem.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Inna N. Safonova ◽  
Alexander N. Skiba

Abstract Let 𝐺 be a finite group, and let 𝔉 be a hereditary saturated formation. We denote by Z F ⁢ ( G ) \mathbf{Z}_{\mathfrak{F}}(G) the product of all normal subgroups 𝑁 of 𝐺 such that every chief factor H / K H/K of 𝐺 below 𝑁 is 𝔉-central in 𝐺, that is, ( H / K ) ⋊ ( G / C G ⁢ ( H / K ) ) ∈ F (H/K)\rtimes(G/\mathbf{C}_{G}(H/K))\in\mathfrak{F} . A subgroup A ⩽ G A\leqslant G is said to be 𝔉-subnormal in the sense of Kegel, or 𝐾-𝔉-subnormal in 𝐺, if there is a subgroup chain A = A 0 ⩽ A 1 ⩽ ⋯ ⩽ A n = G A=A_{0}\leqslant A_{1}\leqslant\cdots\leqslant A_{n}=G such that either A i - 1 ⁢ ⊴ ⁢ A i A_{i-1}\trianglelefteq A_{i} or A i / ( A i - 1 ) A i ∈ F A_{i}/(A_{i-1})_{A_{i}}\in\mathfrak{F} for all i = 1 , … , n i=1,\ldots,n . In this paper, we prove the following generalization of Schenkman’s theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let 𝔉 be a hereditary saturated formation containing all nilpotent groups, and let 𝑆 be a 𝐾-𝔉-subnormal subgroup of 𝐺. If Z F ⁢ ( E ) = 1 \mathbf{Z}_{\mathfrak{F}}(E)=1 for every subgroup 𝐸 of 𝐺 such that S ⩽ E S\leqslant E , then C G ⁢ ( D ) ⩽ D \mathbf{C}_{G}(D)\leqslant D , where D = S F D=S^{\mathfrak{F}} is the 𝔉-residual of 𝑆.


2021 ◽  
Vol 58 (2) ◽  
pp. 147-156
Author(s):  
Qingjun Kong ◽  
Xiuyun Guo

We introduce a new subgroup embedding property in a finite group called s∗-semipermutability. Suppose that G is a finite group and H is a subgroup of G. H is said to be s∗-semipermutable in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K is s-semipermutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H | = |D| is s∗-semipermutable in G. Some recent results are generalized and unified.


2008 ◽  
Vol 01 (03) ◽  
pp. 369-382
Author(s):  
Nataliya V. Hutsko ◽  
Vladimir O. Lukyanenko ◽  
Alexander N. Skiba

Let G be a finite group and H a subgroup of G. Then H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. Then we say that H is nearly S-quasinormal in G if G has an S-quasinormal subgroup T such that HT = G and T ∩ H ≤ HsG. Our main result here is the following theorem. Let [Formula: see text] be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that [Formula: see text]. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) having no supersoluble supplement in G are nearly S-quasinormal in G. Then [Formula: see text].


Author(s):  
Xuanli He ◽  
Qinghong Guo ◽  
Muhong Huang

Let [Formula: see text] be a finite group. A subgroup [Formula: see text] of [Formula: see text] is called to be [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] permutes with all Sylow subgroups of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-supplemented in [Formula: see text] if there exists a subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text] is [Formula: see text]-permutable in [Formula: see text]. In this paper, we investigate [Formula: see text]-nilpotency of a finite group. As applications, we give some sufficient and necessary conditions for a finite group belongs to a saturated formation.


Sign in / Sign up

Export Citation Format

Share Document