scholarly journals ON THE MERTENS–CESÀRO THEOREM FOR NUMBER FIELDS

2015 ◽  
Vol 93 (2) ◽  
pp. 199-210 ◽  
Author(s):  
ANDREA FERRAGUTI ◽  
GIACOMO MICHELI

Let $K$ be a number field with ring of integers ${\mathcal{O}}$. After introducing a suitable notion of density for subsets of ${\mathcal{O}}$, generalising the natural density for subsets of $\mathbb{Z}$, we show that the density of the set of coprime $m$-tuples of algebraic integers is $1/{\it\zeta}_{K}(m)$, where ${\it\zeta}_{K}$ is the Dedekind zeta function of $K$. This generalises a result found independently by Mertens [‘Ueber einige asymptotische Gesetze der Zahlentheorie’, J. reine angew. Math. 77 (1874), 289–338] and Cesàro [‘Question 75 (solution)’, Mathesis 3 (1883), 224–225] concerning the density of coprime pairs of integers in $\mathbb{Z}$.

1995 ◽  
Vol 138 ◽  
pp. 199-208 ◽  
Author(s):  
Stéphane Louboutin

Let M be any number field. We let DM, dM, hu, , AM and RegM be the discriminant, the absolute value of the discriminant, the class-number, the Dedekind zeta-function, the ring of algebraic integers and the regulator of M, respectively.we set If q is any odd prime we let (⋅/q) denote the Legendre’s symbol.


Author(s):  
Jerzy Browkin ◽  
Herbert Gangl

AbstractAssuming a version of the Lichtenbaum conjecture, we apply Brauer-Kuroda relations between the Dedekind zeta function of a number field and the zeta function of some of its subfields to prove formulas relating the order of the tame kernel of a number field F with the orders of the tame kernels of some of its subfields. The details are given for fields F which are Galois over ℚ with Galois group the group ℤ/2 × ℤ/2, the dihedral group D2p; p an odd prime, or the alternating group A4. We include numerical results illustrating these formulas.


2018 ◽  
Vol 98 (2) ◽  
pp. 221-229 ◽  
Author(s):  
BRIAN D. SITTINGER

Let $K$ be a number field with a ring of integers ${\mathcal{O}}$. We follow Ferraguti and Micheli [‘On the Mertens–Cèsaro theorem for number fields’, Bull. Aust. Math. Soc.93(2) (2016), 199–210] to define a density for subsets of ${\mathcal{O}}$ and use it to find the density of the set of $j$-wise relatively $r$-prime $m$-tuples of algebraic integers. This provides a generalisation and analogue for several results on natural densities of integers and ideals of algebraic integers.


Author(s):  
M. Ram Murty ◽  
Siddhi S. Pathak

For an algebraic number field [Formula: see text], let [Formula: see text] be the associated Dedekind zeta-function. It is conjectured that [Formula: see text] is transcendental for any positive integer [Formula: see text]. The only known case of this conjecture was proved independently by Siegel and Klingen, namely that, when [Formula: see text] is a totally real number field, [Formula: see text] is an algebraic multiple of [Formula: see text] and hence, is transcendental. If [Formula: see text] is not totally real, the question of whether [Formula: see text] is irrational or not remains open. In this paper, we prove that for a fixed integer [Formula: see text], at most one of [Formula: see text] is rational, as [Formula: see text] varies over all imaginary quadratic fields. We also discuss a generalization of this theorem to CM-extensions of number fields.


2021 ◽  
Vol 71 (1) ◽  
pp. 251-263
Author(s):  
Guillermo Mantilla-Soler

Abstract Let L be a number field. For a given prime p, we define integers α p L $ \alpha_{p}^{L} $ and β p L $ \beta_{p}^{L} $ with some interesting arithmetic properties. For instance, β p L $ \beta_{p}^{L} $ is equal to 1 whenever p does not ramify in L and α p L $ \alpha_{p}^{L} $ is divisible by p whenever p is wildly ramified in L. The aforementioned properties, although interesting, follow easily from definitions; however a more interesting application of these invariants is the fact that they completely characterize the Dedekind zeta function of L. Moreover, if the residue class mod p of α p L $ \alpha_{p}^{L} $ is not zero for all p then such residues determine the genus of the integral trace.


Author(s):  
Chris Bruce

Abstract We compute the KMS (equilibrium) states for the canonical time evolution on C*-algebras from actions of congruence monoids on rings of algebraic integers. We show that for each $\beta \in [1,2]$, there is a unique KMS$_\beta $ state, and we prove that it is a factor state of type III$_1$. There are phase transitions at $\beta =2$ and $\beta =\infty $ involving a quotient of a ray class group. Our computation of KMS and ground states generalizes the results of Cuntz, Deninger, and Laca for the full $ax+b$-semigroup over a ring of integers, and our type classification generalizes a result of Laca and Neshveyev in the case of the rational numbers and a result of Neshveyev in the case of arbitrary number fields.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050080
Author(s):  
Robson R. Araujo ◽  
Ana C. M. M. Chagas ◽  
Antonio A. Andrade ◽  
Trajano P. Nóbrega Neto

In this work, we computate the trace form [Formula: see text] associated to a cyclic number field [Formula: see text] of odd prime degree [Formula: see text], where [Formula: see text] ramified in [Formula: see text] and [Formula: see text] belongs to the ring of integers of [Formula: see text]. Furthermore, we use this trace form to calculate the expression of the center density of algebraic lattices constructed via the Minkowski embedding from some ideals in the ring of integers of [Formula: see text].


2012 ◽  
Vol 08 (01) ◽  
pp. 125-147 ◽  
Author(s):  
HABIBA KADIRI

Let K be a number field, nK be its degree, and dK be the absolute value of its discriminant. We prove that, if dK is sufficiently large, then the Dedekind zeta function ζK(s) has no zeros in the region: [Formula: see text], [Formula: see text], where log M = 12.55 log dK + 9.69nK log |ℑ𝔪 s| + 3.03 nK + 58.63. Moreover, it has at most one zero in the region:[Formula: see text], [Formula: see text]. This zero if it exists is simple and is real. This argument also improves a result of Stark by a factor of 2: ζK(s) has at most one zero in the region [Formula: see text], [Formula: see text].


Author(s):  
Andrew Best ◽  
Karen Huan ◽  
Nathan McNew ◽  
Steven J. Miller ◽  
Jasmine Powell ◽  
...  

In Ramsey theory one wishes to know how large a collection of objects can be while avoiding a particular substructure. A problem of recent interest has been to study how large subsets of the natural numbers can be while avoiding three-term geometric progressions. Building on recent progress on this problem, we consider the analogous problem over quadratic number fields. We first construct high-density subsets of the algebraic integers of an imaginary quadratic number field that avoid three-term geometric progressions. When unique factorization fails, or over a real quadratic number field, we instead look at subsets of ideals of the ring of integers. Our approach here is to construct sets ‘greedily’, a generalization of the greedy set of rational integers considered by Rankin. We then describe the densities of these sets in terms of values of the Dedekind zeta function. Next, we consider geometric-progression-free sets with large upper density. We generalize an argument by Riddell to obtain upper bounds for the upper density of geometric-progression-free subsets, and construct sets avoiding geometric progressions with high upper density to obtain lower bounds for the supremum of the upper density of all such subsets. Both arguments depend critically on the elements with small norm in the ring of integers.


2000 ◽  
Vol 160 ◽  
pp. 1-15
Author(s):  
Chandrashekhar Khare ◽  
Dipendra Prasad

AbstractLet L be a finite extension of a number field K with ring of integers and respectively. One can consider as a projective module over . The highest exterior power of as an module gives an element of the class group of , called the Steinitz module. These considerations work also for algebraic curves where we prove that for a finite unramified cover Y of an algebraic curve X, the Steinitz module as an element of the Picard group of X is the sum of the line bundles on X which become trivial when pulled back to Y. We give some examples to show that this kind of result is not true for number fields. We also make some remarks on the capitulation problem for both number field and function fields. (An ideal in is said to capitulate in L if its extension to is a principal ideal.)


Sign in / Sign up

Export Citation Format

Share Document