scholarly journals Class-number problems for cubic number fields

1995 ◽  
Vol 138 ◽  
pp. 199-208 ◽  
Author(s):  
Stéphane Louboutin

Let M be any number field. We let DM, dM, hu, , AM and RegM be the discriminant, the absolute value of the discriminant, the class-number, the Dedekind zeta-function, the ring of algebraic integers and the regulator of M, respectively.we set If q is any odd prime we let (⋅/q) denote the Legendre’s symbol.

2012 ◽  
Vol 08 (01) ◽  
pp. 125-147 ◽  
Author(s):  
HABIBA KADIRI

Let K be a number field, nK be its degree, and dK be the absolute value of its discriminant. We prove that, if dK is sufficiently large, then the Dedekind zeta function ζK(s) has no zeros in the region: [Formula: see text], [Formula: see text], where log M = 12.55 log dK + 9.69nK log |ℑ𝔪 s| + 3.03 nK + 58.63. Moreover, it has at most one zero in the region:[Formula: see text], [Formula: see text]. This zero if it exists is simple and is real. This argument also improves a result of Stark by a factor of 2: ζK(s) has at most one zero in the region [Formula: see text], [Formula: see text].


2015 ◽  
Vol 93 (2) ◽  
pp. 199-210 ◽  
Author(s):  
ANDREA FERRAGUTI ◽  
GIACOMO MICHELI

Let $K$ be a number field with ring of integers ${\mathcal{O}}$. After introducing a suitable notion of density for subsets of ${\mathcal{O}}$, generalising the natural density for subsets of $\mathbb{Z}$, we show that the density of the set of coprime $m$-tuples of algebraic integers is $1/{\it\zeta}_{K}(m)$, where ${\it\zeta}_{K}$ is the Dedekind zeta function of $K$. This generalises a result found independently by Mertens [‘Ueber einige asymptotische Gesetze der Zahlentheorie’, J. reine angew. Math. 77 (1874), 289–338] and Cesàro [‘Question 75 (solution)’, Mathesis 3 (1883), 224–225] concerning the density of coprime pairs of integers in $\mathbb{Z}$.


2015 ◽  
Vol 18 (1) ◽  
pp. 684-698
Author(s):  
Daniel Delbourgo ◽  
Qin Chao

We describe an algorithm for finding the coefficients of $F(X)$ modulo powers of $p$, where $p\neq 2$ is a prime number and $F(X)$ is the power series associated to the zeta function of Kubota and Leopoldt. We next calculate the 5-adic and 7-adic ${\it\lambda}$-invariants attached to those cubic extensions $K/\mathbb{Q}$ with cyclic Galois group ${\mathcal{A}}_{3}$ (up to field discriminant ${<}10^{7}$), and also tabulate the class number of $K(e^{2{\it\pi}i/p})$ for $p=5$ and $p=7$. If the ${\it\lambda}$-invariant is greater than zero, we then determine all the zeros for the corresponding branches of the $p$-adic $L$-function and deduce ${\rm\Lambda}$-monogeneity for the class group tower over the cyclotomic $\mathbb{Z}_{p}$-extension of $K$.Supplementary materials are available with this article.


2000 ◽  
Vol 3 ◽  
pp. 336-355 ◽  
Author(s):  
Stefania Cavallar ◽  
Franz Lemmermeyer

AbstractIn this paper we study number fields which are Euclidean with respect to functions that are different from the absolute value of the norm, namely weighted norms that depend on a real parameter c. We introduce the Euclidean minimum of weighted norms as the set of values of c for which the function is Euclidean, and we show that the Euclidean minimum may be irrational and not isolated. We also present computational results on Euclidean minima of cubic number fields, and present a list of norm-Euclidean complex cubic fields that we conjecture to be complete.


Author(s):  
Jerzy Browkin ◽  
Herbert Gangl

AbstractAssuming a version of the Lichtenbaum conjecture, we apply Brauer-Kuroda relations between the Dedekind zeta function of a number field and the zeta function of some of its subfields to prove formulas relating the order of the tame kernel of a number field F with the orders of the tame kernels of some of its subfields. The details are given for fields F which are Galois over ℚ with Galois group the group ℤ/2 × ℤ/2, the dihedral group D2p; p an odd prime, or the alternating group A4. We include numerical results illustrating these formulas.


2020 ◽  
Vol 21 (1) ◽  
pp. 57
Author(s):  
Antonio A. Andrade ◽  
Agnaldo J. Ferrari ◽  
José C. Interlando ◽  
Robson R. Araujo

In this work, we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2,3,4,5,6,8 and 12, which are rotated versions of the lattices Lambda_n, for n =2,3,4,5,6,8 and K_12. These algebraic lattices are constructed through canonical homomorphism via Z-modules of the ring of algebraic integers of a number field.


Author(s):  
M. Ram Murty ◽  
Siddhi S. Pathak

For an algebraic number field [Formula: see text], let [Formula: see text] be the associated Dedekind zeta-function. It is conjectured that [Formula: see text] is transcendental for any positive integer [Formula: see text]. The only known case of this conjecture was proved independently by Siegel and Klingen, namely that, when [Formula: see text] is a totally real number field, [Formula: see text] is an algebraic multiple of [Formula: see text] and hence, is transcendental. If [Formula: see text] is not totally real, the question of whether [Formula: see text] is irrational or not remains open. In this paper, we prove that for a fixed integer [Formula: see text], at most one of [Formula: see text] is rational, as [Formula: see text] varies over all imaginary quadratic fields. We also discuss a generalization of this theorem to CM-extensions of number fields.


2021 ◽  
Vol 71 (1) ◽  
pp. 251-263
Author(s):  
Guillermo Mantilla-Soler

Abstract Let L be a number field. For a given prime p, we define integers α p L $ \alpha_{p}^{L} $ and β p L $ \beta_{p}^{L} $ with some interesting arithmetic properties. For instance, β p L $ \beta_{p}^{L} $ is equal to 1 whenever p does not ramify in L and α p L $ \alpha_{p}^{L} $ is divisible by p whenever p is wildly ramified in L. The aforementioned properties, although interesting, follow easily from definitions; however a more interesting application of these invariants is the fact that they completely characterize the Dedekind zeta function of L. Moreover, if the residue class mod p of α p L $ \alpha_{p}^{L} $ is not zero for all p then such residues determine the genus of the integral trace.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Stephanie Chan ◽  
Christine McMeekin ◽  
Djordjo Milovic

AbstractLet K be a cyclic number field of odd degree over $${\mathbb {Q}}$$ Q with odd narrow class number, such that 2 is inert in $$K/{\mathbb {Q}}$$ K / Q . We define a family of number fields $$\{K(p)\}_p$$ { K ( p ) } p , depending on K and indexed by the rational primes p that split completely in $$K/{\mathbb {Q}}$$ K / Q , in which p is always ramified of degree 2. Conditional on a standard conjecture on short character sums, the density of such rational primes p that exhibit one of two possible ramified factorizations in $$K(p)/{\mathbb {Q}}$$ K ( p ) / Q is strictly between 0 and 1 and is given explicitly as a formula in terms of the degree of the extension $$K/{\mathbb {Q}}$$ K / Q . Our results are unconditional in the cubic case. Our proof relies on a detailed study of the joint distribution of spins of prime ideals.


2019 ◽  
Vol 15 (01) ◽  
pp. 105-130
Author(s):  
Ramy F. Taki Eldin

Over the ring of algebraic integers [Formula: see text] of a number field [Formula: see text], the quadratic congruence [Formula: see text] modulo a nonzero ideal [Formula: see text] is considered. We prove explicit formulas for [Formula: see text] and [Formula: see text], the number of incongruent solutions [Formula: see text] and the number of incongruent solutions [Formula: see text] with [Formula: see text] coprime to [Formula: see text], respectively. If [Formula: see text] is contained in a prime ideal [Formula: see text] containing the rational prime [Formula: see text], it is assumed that [Formula: see text] is unramified over [Formula: see text]. Moreover, some interesting identities for exponential sums are proved.


Sign in / Sign up

Export Citation Format

Share Document