WIENER INDEX ON TRACEABLE AND HAMILTONIAN GRAPHS

2016 ◽  
Vol 94 (3) ◽  
pp. 362-372 ◽  
Author(s):  
RUIFANG LIU ◽  
XUE DU ◽  
HUICAI JIA

We give sufficient conditions for a graph to be traceable and Hamiltonian in terms of the Wiener index and the complement of the graph, which correct and extend the result of Yang [‘Wiener index and traceable graphs’, Bull. Aust. Math. Soc.88 (2013), 380–383]. We also present sufficient conditions for a bipartite graph to be traceable and Hamiltonian in terms of its Wiener index and quasicomplement. Finally, we give sufficient conditions for a graph or a bipartite graph to be traceable and Hamiltonian in terms of its distance spectral radius.

Author(s):  
Tanawat Wichianpaisarn ◽  
Uthoomporn Mato

Let G be a graph and let H be a subgraph of G. Assume that G has an H-decomposition T={H1,H2,…,Ht} such that Hi≅H for all 1≤i≤t. An H-supermagic decomposition of G is a bijection f:V(G)∪E(G)→1,2,…,VG+EG such that ∑v∈V(Hi)f(v)+∑e∈E(Hi)f(e) is a constant k for each Hi in the decomposition T and fVG=1,2,…,VG. If G admits an H-supermagic decomposition, then G is called H-supermagic decomposable. In this paper, we give necessary and sufficient conditions for the existence of K1,n-1-supermagic decomposition of the complete bipartite graph Kn,n minus a one-factor.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Guidong Yu ◽  
Tao Yu ◽  
Xiangwei Xia ◽  
Huan Xu

A pancyclic graph of order n is a graph with cycles of all possible lengths from 3 to n . In fact, it is NP-complete that deciding whether a graph is pancyclic. Because the spectrum of graphs is convenient to be calculated, in this study, we try to use the spectral theory of graphs to study this problem and give some sufficient conditions for a graph to be pancyclic in terms of the spectral radius and the signless Laplacian spectral radius of the graph.


10.37236/212 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
László Babai ◽  
Barry Guiduli

Let $G$ be a graph on $n$ vertices with spectral radius $\lambda$ (this is the largest eigenvalue of the adjacency matrix of $G$). We show that if $G$ does not contain the complete bipartite graph $K_{t ,s}$ as a subgraph, where $2\le t \le s$, then $$\lambda \le \Big((s-1)^{1/t }+o(1)\Big)n^{1-1/t }$$ for fixed $t$ and $s$ while $n\to\infty$. Asymptotically, this bound matches the Kővári-Turán-Sós upper bound on the average degree of $G$ (the Zarankiewicz problem).


2014 ◽  
Vol 30 (3) ◽  
pp. 335-344
Author(s):  
VADIM E. LEVIT ◽  
◽  
EUGEN MANDRESCU ◽  

Let Ψ(G) be the family of all local maximum stable sets of graph G, i.e., S ∈ Ψ(G) if S is a maximum stable set of the subgraph induced by S ∪ N(S), where N(S) is the neighborhood of S. It was shown that Ψ(G) is a greedoid for every forest G [15]. The cases of bipartite graphs, triangle-free graphs, and well-covered graphs, were analyzed in [16, 17, 18, 19, 20, 24]. If G1, G2 are two disjoint graphs, and B is a bipartite graph having E(B) as an edge set and bipartition {V (G1), V (G2)}, then by B-join of G1, G2 we mean the graph B (G1, G2) whose vertex set is V (G1) ∪ V (G2) and edge set is E(G1) ∪ E(G2) ∪ E (B). In this paper we present several necessary and sufficient conditions for Ψ(B (G1, G2)) to form a greedoid, an antimatroid, and a matroid, in terms of Ψ(G1), Ψ(G2) and E (B).


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Gang Wang ◽  
Linxuan Sun ◽  
Lixia Liu

M-eigenvalues of fourth-order partially symmetric tensors play important roles in the nonlinear elastic material analysis and the entanglement problem of quantum physics. In this paper, we introduce M-identity tensor and establish two M-eigenvalue inclusion intervals with n parameters for fourth-order partially symmetric tensors, which are sharper than some existing results. Numerical examples are proposed to verify the efficiency of the obtained results. As applications, we provide some checkable sufficient conditions for the positive definiteness and establish bound estimations for the M-spectral radius of fourth-order partially symmetric nonnegative tensors.


2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


Sign in / Sign up

Export Citation Format

Share Document