APPLICATIONS OF SYSTEMS OF QUADRATIC FORMS TO GENERALISED QUADRATIC FORMS

2020 ◽  
Vol 102 (3) ◽  
pp. 374-386
Author(s):  
A.-H. NOKHODKAR

A system of quadratic forms is associated to every generalised quadratic form over a division algebra with involution of the first kind in characteristic two. It is shown that this system determines the isotropy behaviour and the isometry class of generalised quadratic forms. An application of this construction to the Witt index of generalised quadratic forms is also given.

1972 ◽  
Vol 7 (2) ◽  
pp. 191-226 ◽  
Author(s):  
William M. Pender ◽  
G.E. Wall

The notion of quadratic form over a field of characteristic two is extended to an arbitrary division ring of characteristic two with an involution of the first kind. The resulting isometry groups are shown to have a simple normal subgroup and the structure of the factor group is calculated. It is indicated how one may define and analyse all the classical groups in a unified manner by means of quadratic forms.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter presents various results about quadratic forms of type E⁶, E₇, and E₈. It first recalls the definition of a quadratic space Λ‎ = (K, L, q) of type Eℓ for ℓ = 6, 7 or 8. If D₁, D₂, and D₃ are division algebras, a quadratic form of type E⁶ can be characterized as the anisotropic sum of two quadratic forms, one similar to the norm of a quaternion division algebra D over K and the other similar to the norm of a separable quadratic extension E/K such that E is a subalgebra of D over K. Also, there exist fields of arbitrary characteristic over which there exist quadratic forms of type E⁶, E₇, and E₈. The chapter also considers a number of propositions regarding quadratic spaces, including anisotropic quadratic spaces, and proves some more special properties of quadratic forms of type E₅, E⁶, E₇, and E₈.


2010 ◽  
Vol 06 (03) ◽  
pp. 603-624
Author(s):  
KLAAS-TIDO RÜHL

We study annihilating polynomials and annihilating ideals for elements of Witt rings for groups of exponent 2. With the help of these results and certain calculations involving the Clifford invariant, we are able to give full sets of generators for the annihilating ideal of both the isometry class and the equivalence class of an arbitrary quadratic form over a local field. By applying the Hasse–Minkowski theorem, we can then achieve the same for an arbitrary quadratic form over a global field.


2014 ◽  
Vol 150 (12) ◽  
pp. 2073-2094 ◽  
Author(s):  
Nikita A. Karpenko ◽  
Alexander S. Merkurjev

AbstractWe study a Hermitian form $h$ over a quaternion division algebra $Q$ over a field ($h$ is supposed to be alternating if the characteristic of the field is two). For generic $h$ and $Q$, for any integer $i\in [1,\;n/2]$, where $n:=\dim _{Q}h$, we show that the variety of $i$-dimensional (over $Q$) totally isotropic right subspaces of $h$ is $2$-incompressible. The proof is based on a computation of the Chow ring for the classifying space of a certain parabolic subgroup in a split simple adjoint affine algebraic group of type $C_{n}$. As an application, we determine the smallest value of the $J$-invariant of a non-degenerate quadratic form divisible by a $2$-fold Pfister form; we also determine the biggest values of the canonical dimensions of the orthogonal Grassmannians associated to such quadratic forms.


1986 ◽  
Vol 28 (2) ◽  
pp. 227-228 ◽  
Author(s):  
P. Mammone ◽  
J. P. Tignol

In a recent paper [3], D. W. Lewis proposed the following conjecture. (The notation is the same as that in [2] and [3].)Conjecture. Let F be a field of characteristic not 2 and let a1, b1…, an, bn ∈ Fx. The tensor product of quaternion algebrasis a division algebra if and only if the quadratic form over Fis anisotropic.This equivalence indeed holds for n = 1 as is well known [2, Theorem 2.7], and Albert [1] (see also [4, §15.7]) has shown that it also holds for n = 2. The aim of this note is to provide counterexamples to both of the implications for n ≥ 3.


1997 ◽  
Vol 55 (2) ◽  
pp. 293-297 ◽  
Author(s):  
Hamza Ahmad

For a field k of characteristic not two, it is known that k is algebraically closed in the function field of any (non-degenerate) quadratic form in three or more variables. In this note we consider fields of characteristic two and decide when k is algebraically closed in a function field of a quadratic k-form. For quadratic forms in three variables this has recently been done by Ohm.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves that Bruhat-Tits buildings exist. It begins with a few definitions and simple observations about quadratic forms, including a 1-fold Pfister form, followed by a discussion of the existence part of the Structure Theorem for complete discretely valued fields due to H. Hasse and F. K. Schmidt. It then considers the generic unramified cases; the generic semi-ramified cases, the generic ramified cases, the wild unramified cases, the wild semi-ramified cases, and the wild ramified cases. These cases range from a unique unramified quadratic space to an unramified separable quadratic extension, a tamely ramified division algebra, a ramified separable quadratic extension, and a unique unramified quaternion division algebra. The chapter also describes ramified quaternion division algebras D₁, D₂, and D₃ over K containing a common subfield E such that E/K is a ramified separable extension.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter assumes that (K, L, q) is a totally wild quadratic space of type E₇. The goal is to prove the proposition that takes into account Λ‎ of type E₇, D as the quaternion division algebra over K whose image in Br(K) is the Clifford invariant of q, and the trace and trace map. The chapter also considers two other propositions: the first states that if the trace map is not equal to zero, then the Moufang residues R₀ and R₁ are not indifferent; the second states that if the trace map is equal to zero, then the Moufang residues R₀ and R₁ are both indifferent.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves several more results about weak isomorphisms between Moufang sets arising from quadratic forms and involutory sets. It first fixes a non-trivial anisotropic quadratic space Λ‎ = (K, L, q) before considering two proper anisotropic pseudo-quadratic spaces. It then describes a quaternion division algebra and its standard involution, a second quaternion division algebra and its standard involution, and an involutory set with a quaternion division algebra and its standard involution. It concludes with one more small observation regarding a pointed anisotropic quadratic space and shows that there is a unique multiplication on L that turns L into an integral domain with a multiplicative identity.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


Sign in / Sign up

Export Citation Format

Share Document