scholarly journals Clifford division algebras and anisotropic quadratic forms: two counterexamples

1986 ◽  
Vol 28 (2) ◽  
pp. 227-228 ◽  
Author(s):  
P. Mammone ◽  
J. P. Tignol

In a recent paper [3], D. W. Lewis proposed the following conjecture. (The notation is the same as that in [2] and [3].)Conjecture. Let F be a field of characteristic not 2 and let a1, b1…, an, bn ∈ Fx. The tensor product of quaternion algebrasis a division algebra if and only if the quadratic form over Fis anisotropic.This equivalence indeed holds for n = 1 as is well known [2, Theorem 2.7], and Albert [1] (see also [4, §15.7]) has shown that it also holds for n = 2. The aim of this note is to provide counterexamples to both of the implications for n ≥ 3.

Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter presents various results about quadratic forms of type E⁶, E₇, and E₈. It first recalls the definition of a quadratic space Λ‎ = (K, L, q) of type Eℓ for ℓ = 6, 7 or 8. If D₁, D₂, and D₃ are division algebras, a quadratic form of type E⁶ can be characterized as the anisotropic sum of two quadratic forms, one similar to the norm of a quaternion division algebra D over K and the other similar to the norm of a separable quadratic extension E/K such that E is a subalgebra of D over K. Also, there exist fields of arbitrary characteristic over which there exist quadratic forms of type E⁶, E₇, and E₈. The chapter also considers a number of propositions regarding quadratic spaces, including anisotropic quadratic spaces, and proves some more special properties of quadratic forms of type E₅, E⁶, E₇, and E₈.


2014 ◽  
Vol 150 (12) ◽  
pp. 2073-2094 ◽  
Author(s):  
Nikita A. Karpenko ◽  
Alexander S. Merkurjev

AbstractWe study a Hermitian form $h$ over a quaternion division algebra $Q$ over a field ($h$ is supposed to be alternating if the characteristic of the field is two). For generic $h$ and $Q$, for any integer $i\in [1,\;n/2]$, where $n:=\dim _{Q}h$, we show that the variety of $i$-dimensional (over $Q$) totally isotropic right subspaces of $h$ is $2$-incompressible. The proof is based on a computation of the Chow ring for the classifying space of a certain parabolic subgroup in a split simple adjoint affine algebraic group of type $C_{n}$. As an application, we determine the smallest value of the $J$-invariant of a non-degenerate quadratic form divisible by a $2$-fold Pfister form; we also determine the biggest values of the canonical dimensions of the orthogonal Grassmannians associated to such quadratic forms.


1988 ◽  
Vol 30 (1) ◽  
pp. 111-113
Author(s):  
P. Mammone

The purpose of this note is to generalize to fields of characteristic two the results obtained in [4]. We obtain necessary and sufficient conditions involving quadratic forms for certain tensor products of quaternion algebras to be division algebras.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves that Bruhat-Tits buildings exist. It begins with a few definitions and simple observations about quadratic forms, including a 1-fold Pfister form, followed by a discussion of the existence part of the Structure Theorem for complete discretely valued fields due to H. Hasse and F. K. Schmidt. It then considers the generic unramified cases; the generic semi-ramified cases, the generic ramified cases, the wild unramified cases, the wild semi-ramified cases, and the wild ramified cases. These cases range from a unique unramified quadratic space to an unramified separable quadratic extension, a tamely ramified division algebra, a ramified separable quadratic extension, and a unique unramified quaternion division algebra. The chapter also describes ramified quaternion division algebras D₁, D₂, and D₃ over K containing a common subfield E such that E/K is a ramified separable extension.


1981 ◽  
Vol 89 (2) ◽  
pp. 225-235 ◽  
Author(s):  
Madhu Raka

Let Qr be a real indefinite quadratic form in r variables of determinant D ≠ 0 and of type (r1, r2), 0 < r1 < r, r = r1 + r2, S = r1 − r2 being the signature of Qr. It is known (e.g. Blaney (3)) that, given any real numbers c1, c2,…, cr, there exists a constant C depending only on r and s such that the inequalityhas a solution in integers x1, x2, …, xr.


Author(s):  
R. J. Hans-Gill ◽  
Madhu Raka

AbstractHere it is proved that if Q(x, y, z, t, u) is a real indefinite quinary quadratic form of type (4,1) and determinant D, then given any real numbers x0, y0, z0, t0, u0 there exist integers x, y, z, t, u such thatAll critical forms are also obtained.


1953 ◽  
Vol 10 (1) ◽  
pp. 13-15
Author(s):  
S. Vajda

In a paper read before the Research Branch of the Royal Statistical Society (Ref. 1, p. 150) the following case was considered:Let the expression be given; introduce, for c, a linear form in and obtainIf the yi are sample values from a normal population with unit variance, then it is known (Ref. 2) that (1) is distributed as where zi varies as chi-squared with one degree of freedom and the li are the latent roots of the matrix of the quadratic form. If these latent roots are f times unity and n—f times zero, then this reduces to a chi-squared distribution with f degrees of freedom.


1963 ◽  
Vol 15 ◽  
pp. 412-421 ◽  
Author(s):  
J. H. H. Chalk

Letbe an indefinite quadratic form in the integer variables x1, . . . , xn with real coefficients of determinant D = ||ars||(n) ≠ 0. The homogeneous minimum MH(Qn) and the inhomogeneous minimum MI(Qn) of Qn(x) are defined as follows :


2020 ◽  
Vol 102 (3) ◽  
pp. 374-386
Author(s):  
A.-H. NOKHODKAR

A system of quadratic forms is associated to every generalised quadratic form over a division algebra with involution of the first kind in characteristic two. It is shown that this system determines the isotropy behaviour and the isometry class of generalised quadratic forms. An application of this construction to the Witt index of generalised quadratic forms is also given.


Sign in / Sign up

Export Citation Format

Share Document