FINITE SUM OF COMPOSITION OPERATORS ON FOCK SPACE

Author(s):  
PHAM VIET HAI

Abstract We investigate unbounded, linear operators arising from a finite sum of composition operators on Fock space. Real symmetry and complex symmetry of these operators are characterised.

Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Liankuo Zhao

We give a complete characterization of bounded invertible weighted composition operators on the Fock space ofCN.


1975 ◽  
Vol 12 (1) ◽  
pp. 23-25 ◽  
Author(s):  
Béla Bollobás ◽  
Stephan E. Eldridge

Giles and Joseph (Bull. Austral. Math. Soc. 11 (1974), 31–36), proved that the numerical range of an unbounded operator on a Banach space has a certain density property. They showed, in particular, that the numerical range of an unbounded operator on certain Banach spaces is dense in the scalar field. We prove that the numerical range of an unbounded operator on a Banach space is always dense in the scalar field.


1995 ◽  
Vol 47 (4) ◽  
pp. 744-785 ◽  
Author(s):  
Neal J. Fowler

AbstractGiven a strongly continuous semigroup of isometries ∪ acting on a Hilbert space ℋ, we construct an E0-semigroup α∪, the free E0-semigroup over ∪, acting on the algebra of all bounded linear operators on full Fock space over ℋ. We show how the semigroup αU⊗V can be regarded as the free product of α∪ and αV. In the case where U is pure of multiplicity n, the semigroup au, called the Free flow of rank n, is shown to be completely spatial with Arveson index +∞. We conclude that each of the free flows is cocycle conjugate to the CAR/CCR flow of rank +∞.


Sign in / Sign up

Export Citation Format

Share Document