scholarly journals A variant of Carathéodory's problem

1968 ◽  
Vol 16 (1) ◽  
pp. 43-48
Author(s):  
Gilbert Strang

In this note we ask two questions and answer one. The questions can be combined as follows:Does there exist a polynomial of the formwhich starts with prescribed complex coefficients c0, …, cr–1; and satisfiesThese differ from the classical problems of Carathéodory in one essential respect: the values of p and its first r–1 derivatives are given at the point z = 1 on the circumference of the unit circle, while in the original problem they were given at z = 0. Carathéodory's own answer was in terms of his “moment curve”, but the forms studied a few years later by Toeplitz yield a more convenient statement of the solution.

1962 ◽  
Vol 58 (2) ◽  
pp. 229-234 ◽  
Author(s):  
L. Mirsky

Throughout this note we shall consider a fixed polynomial with complex coefficients and of degree n ≥ 2. Its zeros will be denoted by ξ1, ξ2, …, ξn where the numbering is such that Making use of Jensen's integral formula, Mahler (4) showed that, for l ≥ k < n, A slightly weaker result had been established by Feldman in an earlier publication (2). Mahler's inequality (1) is of importance in the study of transcendental numbers, and our first object is to sharpen his bound by proving the following result.


Author(s):  
C. N. Linden ◽  
M. L. Cartwright

Letbe a function regular for | z | < 1. With the hypotheses f(0) = 0 andfor some positive constant α, Cartwright(1) has deduced upper bounds for |f(z) | in the unit circle. Three cases have arisen and according as (1) holds with α < 1, α = 1 or α > 1, the bounds on each circle | z | = r are given respectively byK(α) being a constant which depends only on the corresponding value of α which occurs in (1). We shall always use the symbols K and A to represent constants dependent on certain parameters such as α, not necessarily having the same value at each occurrence.


1962 ◽  
Vol 14 ◽  
pp. 540-551 ◽  
Author(s):  
W. C. Royster

Let Σ represent the class of analytic functions(1)which are regular, except for a simple pole at infinity, and univalent in |z| > 1 and map |z| > 1 onto a domain whose complement is starlike with respect to the origin. Further let Σ- 1 be the class of inverse functions of Σ which at w = ∞ have the expansion(2).In this paper we develop variational formulas for functions of the classes Σ and Σ- 1 and obtain certain properties of functions that extremalize some rather general functionals pertaining to these classes. In particular, we obtain precise upper bounds for |b2| and |b3|. Precise upper bounds for |b1|, |b2| and |b3| are given by Springer (8) for the general univalent case, provided b0 =0.


1994 ◽  
Vol 37 (1) ◽  
pp. 73-89 ◽  
Author(s):  
D. J. Hallenbeck ◽  
T. H. MacGregor

This paper considers the radial and nontangential growth of a function f given bywhere α>0 and μ is a complex-valued Borel measure on the unit circle. The main theorem shows how certain local conditions on μ near eiθ affect the growth of f(z) as z→eiθ in Stolz angles. This result leads to estimates on the nontangential growth of f where exceptional sets occur having zero β-capacity.


1964 ◽  
Vol 16 ◽  
pp. 721-728 ◽  
Author(s):  
Frank Forelli

Let a be the Lebesgue measure on the unit circle |z| = 1 withand let Lp be the space of complex-valued σ-measurable functions f such thatis finite. Hp is the closure in Lp of the algebra of analytic polynomials


1970 ◽  
Vol 17 (1) ◽  
pp. 23-36
Author(s):  
M. H. Martin

The study of periodic, irrotational waves of finite amplitude in an incompressible fluid of infinite depth was reduced by Levi-Civita (1) to the determination of a functionregular analytic in the interior of the unit circle ρ = 1 and which satisfies the condition


1953 ◽  
Vol 49 (2) ◽  
pp. 190-193 ◽  
Author(s):  
H. Davenport

Let L1, …, Ln be n homogeneous linear forms in n variables u1, …, un, with non-zero determinant Δ. Suppose that L1, …, Lr have real coefficients, that Lr+1, …, Lr+s have complex coefficients, and that the form Lr+s+j is the complex conjugate of the form Lr+j for j = 1, …, s, where r + 2s = n. Letfor integral u1, …, un, not all zero. For any n numbers α1, …, αn of the same ‘type’ as the forms L1, …, Ln (that is, α1, …, αr real, αr+1, …, αr+s complex, αr+s+j = ᾱr+j), let


1962 ◽  
Vol 13 (2) ◽  
pp. 173-174
Author(s):  
A. C. Aitken

L. J. Mordell has recently considered (1) the squared modulus of a complex difference-product, namelyunder the conditionsand also under the quite different conditionHe proves that under (2) the maximum of δ is nn, and is attained when and only when the zr are vertices of a regular n-gon on the unit circle.


1978 ◽  
Vol 21 (1) ◽  
pp. 17-23 ◽  
Author(s):  
M. J. Crabb ◽  
J. Duncan

Let A be a complex unital Banach algebra. An element u∈A is a norm unitary if(For the algebra of all bounded operators on a Banach space, the norm unitaries arethe invertible isometries.) Given a norm unitary u∈A, we have Sp(u)⊃Γ, where Sp(u) denotes the spectrum of u and Γ denotes the unit circle in C. If Sp(u)≠Γ we may suppose, by replacing eiθu, that . Then there exists h ∈ A such that


1949 ◽  
Vol 45 (2) ◽  
pp. 207-212 ◽  
Author(s):  
S. Verblunsky

1. Let z = reiθ, and let h(z) denote a (regular) positive harmonic function in the unit circle r < 1. Then h(r) (1−r) and h(r)/(1 − r) tend to limits as r → 1. The first limit is finite; the second may be infinite. Such properties of h can be obtained in a straightforward way by using the fact that we can writewhere α(phgr) is non-decreasing in the closed interval (− π, π). Another method is to writewhere h* is a harmonic function conjugate to h. Then the functionhas the property | f | < 1 in the unit circle. Such functions have been studied by Julia, Wolff, Carathéodory and others.


Sign in / Sign up

Export Citation Format

Share Document